Germs of arcs on singular algebraic varieties and motivic integration

نویسنده

  • Jan Denef
چکیده

Let k be a ®eld of characteristic zero. We denote by M the Grothendieck ring of algebraic varieties over k (i.e. reduced separated schemes of ®nite type over k). It is the ring generated by symbols ‰SŠ, for S an algebraic variety over k, with the relations ‰SŠ ˆ ‰S0Š if S is isomorphic to S0; ‰SŠ ˆ ‰S n S0Š ‡ ‰S0Š if S0 is closed in S and ‰S S0Š ˆ ‰SŠ‰S0Š. Note that, for S an algebraic variety over k, the mapping S0 7! ‰S0Š from the set of closed subvarieties of S extends uniquely to a mapping W 7! ‰W Š from the set of constructible subsets of S to M, satisfying ‰W [W 0Š ˆ ‰W Š ‡ ‰W 0Š ÿ ‰W \ W 0Š. We set L :ˆ ‰AkŠ and Mloc :ˆ M‰Lÿ1Š. We denote by M‰T Šloc the subring of Mloc‰‰T ŠŠ generated by Mloc‰T Š and the series …1 ÿ LT b†ÿ1 with a in Z and b in Nnf0g. Let X be an algebraic variety over k. We denote by L…X † the scheme of germs of arcs on X . It is a scheme over k and for any ®eld extension k K there is a natural bijection

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outline of the lectures “ Motivic and p - adic integration ” by François Loeser

References: Lecture 1 [1] J.Igusa, An introduction to the theory of local zeta functions. AMS/IP Studies in Advanced Mathematics, 14. American Mathematical Society, Providence, RI; International Press, Cambridge, MA, 2000. [2] J.Denef, Arithmetic and geometric applications of quantifier elimination for valued fields. Model theory, algebra, and geometry, 173–198, Math. Sci. Res. Inst. Publ., 39,...

متن کامل

2 00 0 Zeta Functions and ‘ Kontsevich Invariants ’ on Singular Varieties

Let X be a nonsingular algebraic variety in characteristic zero. To an effective divisor on X Kontsevich has associated a certain motivic integral, living in a completion of the Grotendieck ring of algebraic varieties. He used this invariant to show that birational (smooth, projective) Calabi–Yau varieties have the same Hodge numbers. Then Denef and Loeser introduced the invariant motivic (Igus...

متن کامل

Invariants ’ on Singular Varieties

Let X be a nonsingular algebraic variety in characteristic zero. To an effective divisor on X Kontsevich has associated a certain ‘motivic integral’, living in a completion of the Grotendieck ring of algebraic varieties. He used this invariant to show that birational (smooth, projective) Calabi–Yau varieties have the same Hodge numbers. Then Denef and Loeser introduced the invariant motivic (Ig...

متن کامل

ZETA FUNCTIONS AND ` KONTSEVICHINVARIANTS ' ON SINGULAR VARIETIESWillem

Let X be a nonsingular algebraic variety in characteristic zero. To an eeective divisor on X Kontsevich has associated a certain`motivic integral', living in a completion of the Grotendieck ring of algebraic varieties. He used this invariant to show that birational (smooth, projective) Calabi{Yau varieties have the same Hodge numbers. Then Denef and Loeser introduced the invariant motivic (Igus...

متن کامل

Arc Spaces , Motivic Integration

The concept ofmotivic integrationwas invented by Kontsevich to show that birationally equivalent Calabi-Yau manifolds have the same Hodge numbers. He constructed a certain measure on the arc space of an algebraic variety, the motivic measure, with the subtle and crucial property that it takes values not in R, but in the Grothendieck ring of algebraic varieties. A whole theory on this subject wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998