Elliptic, Parabolic and Hyperbolic Analytic Function Theory–1: Geometry of Invariants
نویسنده
چکیده
This paper expands the earlier paper [30] and presents foundation for a systematic treatment of three main (elliptic, parabolic and hyperbolic) types of analytic function theory based on the representation theory of SL2(R) group. We describe here geometries of corresponding domains. The principal rôle is played by Clifford algebras of matching types. In this paper we also generalise the Fillmore–Springer–Cnops construction which describe cycles as points in the extended space.
منابع مشابه
Erlangen Program at Large-1: Geometry of Invariants
This paper presents geometrical foundation for a systematic treatment of three main (elliptic, parabolic and hyperbolic) types of analytic function theories based on the representation theory of SL2(R) group. We describe here geometries of corresponding domains. The principal rôle is played by Clifford algebras of matching types. In this paper we also generalise the Fillmore–Springer–Cnops cons...
متن کاملIsometric Action of Sl2(r) on Homogeneous Spaces
We investigate the SL2(R) invariant geodesic curves with the associated invariant distance function in parabolic geometry. Parabolic geometry naturally occurs in the study of SL2(R) and is placed in between the elliptic and the hyperbolic (also known as the Lobachevsky half-plane and 2dimensional Minkowski space-time) geometries. Initially we attempt to use standard methods of finding geodesics...
متن کاملAnalytic solutions for the Stephen's inverse problem with local boundary conditions including Elliptic and hyperbolic equations
In this paper, two inverse problems of Stephen kind with local (Dirichlet) boundary conditions are investigated. In the first problem only a part of boundary is unknown and in the second problem, the whole of boundary is unknown. For the both of problems, at first, analytic expressions for unknown boundary are presented, then by using these analytic expressions for unknown boundaries and bounda...
متن کاملExamples of Conics Arising in Two - Dimensional Finsler and Lagrange Geometries ∗
The well-known invariants of conics are computed for classes of Finsler and Lagrange spaces. For the Finsler case, some (α, β)-metrics namely Randers, Kropina and ”Riemann”-type metrics provides conics as indicatrices and a Randers-Funk metric on the unit disk is treated as example. The relations between algebraic and differential invariants of (α, β)-metrics are pointed out as a method to use ...
متن کاملCheng and Yau’s Work on Affine Geometry and Maximal Hypersurfaces
As part of their great burst of activity in the late 1970s, Cheng and Yau proved many geometric results concerning differential structures invariant under affine transformations of R n. Affine differential geometry is the study of those differential properties of hypersurfaces in R n+1 which are invariant under volume-preserving affine transformations. One way to develop this theory is to start...
متن کامل