Myocardial performance and adaptive energy pathways in a torpid mammalian hibernator.
نویسندگان
چکیده
The hearts of mammalian hibernators maintain contractile function in the face of severe environmental stresses during winter heterothermy. To enable survival in torpor, hibernators regulate the expression of numerous genes involved in excitation-contraction coupling, metabolism, and stress response pathways. Understanding the basis of this transition may provide new insights into treatment of human cardiac disease. Few studies have investigated hibernator heart performance during both summer active and winter torpid states, and seasonal comparisons of whole heart function are generally lacking. We investigated the force-frequency relationship and the response to ex vivo ischemia-reperfusion in intact isolated hearts from 13-lined ground squirrels (Ictidomys tridecemlineatus) in the summer (active, July) and winter (torpid, January). In standard euthermic conditions, we found that winter hearts relaxed more rapidly than summer hearts at low to moderate pacing frequencies, even though systolic function was similar in both seasons. Proteome data support the hypothesis that enhanced Ca(2+) handling in winter torpid hearts underlies the increased relaxation rate. Additionally, winter hearts developed significantly less rigor contracture during ischemia than summer hearts, while recovery during reperfusion was similar in hearts between seasons. Winter torpid hearts have an increased glycogen content, which likely reduces development of rigor contracture during the ischemic event due to anaerobic ATP production. These cardioprotective mechanisms are important for the hibernation phenotype and highlight the resistance to hypoxic stress in the hibernator.
منابع مشابه
Thermogenic capacity at subzero temperatures: how low can a hibernator go?
Abstract Hibernation in mammals is a physiological and behavioral adaptation to survive intervals of low resource availability through profound decreases in metabolic rate (MR), core body temperature (Tb), and activity. Most small mammalian hibernators thermoconform, with Tb approximating ambient temperature (Ta); arctic species are an exception, since they must actively defend what can be larg...
متن کاملCool running: locomotor performance at low body temperature in mammals.
Mammalian torpor saves enormous amounts of energy, but a widely assumed cost of torpor is immobility and therefore vulnerability to predators. Contrary to this assumption, some small marsupial mammals in the wild move while torpid at low body temperatures to basking sites, thereby minimizing energy expenditure during arousal. Hence, we quantified how mammalian locomotor performance is affected ...
متن کاملThe Role of Mammalian Target of Rapamycine Signaling Pathway in Central Nervous System Cancers: A Review
Mammalian mechanistic target of rapamycine (mTOR) is a conserved serine/threonine kinase in the cellular PI3K/Akt/mTOR signaling pathway. This pathway is modified by cellular alterations such as level of energy, growth factors, stresses, as well as the increased environmental level of cancerous cytokines. In general, increase of this kinase protein function is seen in various types of cancers, ...
متن کاملAdaptive mechanisms of intracellular calcium homeostasis in mammalian hibernators.
Intracellular Ca(2+) homeostasis is a prerequisite for a healthy cell life. While cells from some mammals may suffer dysregulation of intracellular Ca(2+) levels under certain deleterious and stressful conditions, including hypothermia and ischemia, cells from mammalian hibernators exhibit a remarkable ability to maintain a homeostatic intracellular Ca(2+) environment. Compared with cells from ...
متن کاملEnergy-Based Adaptive Sliding Mode Speed Control for Switched Reluctance Motor Drive
Torque ripple minimization of switched reluctance motor drives is a major subject based on these drives’ extensive use in the industry. In this paper, by using a well-known cascaded torque control structure and taking the machine physical structure characteristics into account, the proposed energy-based (passivity-based) adaptive sliding algorithm derived from the view point of energy dissipati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 309 4 شماره
صفحات -
تاریخ انتشار 2015