Radiation-generated short DNA fragments may perturb non-homologous end-joining and induce genomic instability.

نویسندگان

  • Dalong Pang
  • Thomas A Winters
  • Mira Jung
  • Shubhadeep Purkayastha
  • Luciane R Cavalli
  • Sergey Chasovkikh
  • Bassem R Haddad
  • Anatoly Dritschilo
چکیده

Cells exposed to densely ionizing radiation (high-LET) experience more severe biological damage than do cells exposed to sparsely ionizing radiation (low-LET). The prevailing hypothesis is that high-LET radiations induce DNA double strand-breaks (DSB) that are more complex and clustered, and are thereby more challenging to repair. Here, we present experimental data obtained by atomic force microscopy imaging, DNA-dependent protein kinase (DNA-PK) activity determination, DNA ligation assays, and genomic studies to suggest that short DNA fragments are important products of radiation-induced DNA lesions, and that the lengths of DNA fragments may be significant in the cellular responses to ionizing radiation. We propose the presence of a subset of short DNA fragments that may affect cell survival and genetic stability following exposure to ionizing radiation, and that the enhanced biological effects of high-LET radiation may be explained, in part, by the production of increased quantities of short DNA fragments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spontaneous telomere to telomere fusions occur in unperturbed fission yeast cells

Telomeres protect eukaryotic chromosomes from illegitimate end-to-end fusions. When this function fails, dicentric chromosomes are formed, triggering breakage-fusion-bridge cycles and genome instability. How efficient is this protection mechanism in normal cells is not fully understood. We created a positive selection assay aimed at capturing chromosome-end fusions in Schizosaccharomyces pombe....

متن کامل

Heat shock factor 1, an inhibitor of non-homologous end joining repair

A novel role for HSF1 as an inhibitor of non-homologous end joining (NHEJ) repair activity was identified. HSF1 interacted directly with both of the N-terminal sequences of the Ku70 and Ku86 proteins, which inhibited the endogenous heterodimeric interaction between Ku70 and Ku86. The blocking of the Ku70 and Ku86 interaction by HSF1 induced defective NHEJ repair activity and ultimately activate...

متن کامل

Is Non-Homologous End-Joining Really an Inherently Error-Prone Process?

DNA double-strand breaks (DSBs) are harmful lesions leading to genomic instability or diversity. Non-homologous end-joining (NHEJ) is a prominent DSB repair pathway, which has long been considered to be error-prone. However, recent data have pointed to the intrinsic precision of NHEJ. Three reasons can account for the apparent fallibility of NHEJ: 1) the existence of a highly error-prone altern...

متن کامل

A Stochastic Model of DNA Fragments Rejoining

When cells are exposed to ionizing radiation, DNA damages in the form of single strand breaks (SSBs), double strand breaks (DSBs), base damage or their combinations are frequent events. It is known that the complexity and severity of DNA damage depends on the quality of radiation, and the microscopic dose deposited in small segments of DNA, which is often related to the linear transfer energy (...

متن کامل

LRF maintains genome integrity by regulating the non-homologous end joining pathway of DNA repair

Leukemia/lymphoma-related factor (LRF) is a POZ/BTB and Krüppel (POK) transcriptional repressor characterized by context-dependent key roles in cell fate decision and tumorigenesis. Here we demonstrate an unexpected transcription-independent function for LRF in the classical non-homologous end joining (cNHEJ) pathway of double-strand break (DSB) repair. We find that LRF loss in cell lines and m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of radiation research

دوره 52 3  شماره 

صفحات  -

تاریخ انتشار 2011