Quantal Ca2+ release and inactivation in a model of the inositol 1,4,5-trisphosphate receptor involving transformation of the ligand by the receptor.

نویسندگان

  • N P Kaimachnikov
  • V G Nazarenko
چکیده

A model explaining quantal Ca2+ release as an intrinsic property of the inositol 1,4,5-triphosphate (IP3) receptor has been put forward. The model is based on the hypothesis that the IP3 receptor can catalyze a transformation of the IP3 molecule differing from its conventional metabolism. A simple kinetic mechanism is considered, in which IP3-induced Ca2+ channel opening is followed by the step of IP3 conversion and channel closure. Examination of the resulting mathematical model shows that it can reproduce well both partial release of stored Ca2+ and the same responsiveness to subsequent IP3 additions. On incorporation of an additional closed state of the channel, the model describes also a time-dependent channel inactivation at a high IP3 dose. Temperature sensitivity of the catalytic step accounts for the reported elimination of quantal responses and inactivation at low temperature. The transformation product is surmised to be a positional or stereo isomer of IP3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

"Quantal" Ca2+ release at the cytoplasmic aspect of the Ins(1,4,5)P3R channel in smooth muscle.

Smooth muscle responds to activation of the inositol (1,4,5)-trisphosphate receptor [Ins(1,4,5)P(3)R] with a graded concentration-dependent ("quantal") Ca2+ release from the sarcoplasmic reticulum (SR) store. Graded release seems incompatible both with the finite capacity of the store and the Ca2+-induced Ca2+ release (CICR)-like facility, at Ins(1,4,5)P3Rs, that, once activated, should release...

متن کامل

Ca 2 + Release from Inositol Trisphosphate - sensitive Stores Is Not Modulated by Intra - luminal

In a recent model developed to explain the apparent “quantal” nature of inositol 1,4,5-trisphosphate (Ins(l,4,5)P3)-induced Ca2+ release from specific intracellular stores, it was proposed that Ca2+ release from the stores may itself be modulated by intraluminal levels of Ca2+, possibly via an action at a binding site on the Ins(1,4,5)P3 receptor/Ca2+ channel complex. Essential predictions of t...

متن کامل

Inositol 1,4,5-trisphosphate and calcium regulate the calcium channel function of the hepatic inositol 1,4,5-trisphosphate receptor.

The regulation of the inositol 1,4,5-trisphosphate (IP3) receptor in liver was analyzed using a novel superfusion method. Hepatic microsomes were loaded with 45Ca2+, and superfused at high flow rates to provide precise control over IP3 and Ca2+ concentrations ([Ca2+]) and to isolate 45Ca2+ release from reuptake. 45Ca2+ release was dependent on both [Ca2+] and IP3. The initial rate of 45Ca2+ rel...

متن کامل

Quantal release, incremental detection, and long-period Ca2+ oscillations in a model based on regulatory Ca2+-binding sites along the permeation pathway.

Quantal release, incremental detection, and oscillations are three types of Ca2+ responses that can be obtained in different conditions, after stimulation of the intracellular Ca2+ stores by submaximum concentrations of inositol 1,4,5-triphosphate (InsP3). All three phenomena are thought to occur through the regulatory properties of the InsP3 receptor/Ca2+ channel. In the present study, we perf...

متن کامل

Purified reconstituted inositol 1,4,5-trisphosphate receptors. Thiol reagents act directly on receptor protein.

Thimerosal, a sulfhydryl oxidizing reagent, has been shown to induce Ca2+ mobilization in several cell types and to increase the sensitivity of intracellular Ca2+ stores to inositol 1,4,5-trisphosphate (IP3). Using purified IP3 receptor (IP3R) protein reconstituted in vesicles, we demonstrate pronounced stimulation by thimerosal of its Ca2+ channel activity. Effects of thimerosal are dependent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioscience reports

دوره 16 5  شماره 

صفحات  -

تاریخ انتشار 1996