Newton maps for quintic polynomials
نویسندگان
چکیده
The purpose of this paper is to study some properties of the Newton maps associated to real quintic polynomials. First using the Tschirnhaus transformation, we reduce the study of Newton’s method for general quintic polynomials to the case f(x) = x − c x + 1. Then we use symbolic dynamics to consider this last case and construct a kneading sequences tree for Newton maps. Finally, we prove that the topological entropy is a monotonic non-decreasing map with respect to the parameter c.
منابع مشابه
Solving the quintic by iteration
Equations that can be solved using iterated rational maps are characterized: an equation is ‘computable’ if and only if its Galois group is within A5 of solvable. We give explicitly a new solution to the quintic polynomial, in which the transcendental inversion of the icosahedral map (due to Hermite and Kronecker) is replaced by a purely iterative algorithm. The algorithm requires a rational ma...
متن کاملNumerical Solution of Fuzzy Polynomials by Newton-Raphson Method
The main purpose of this paper is to find fuzzy root of fuzzy polynomials (if exists) by using Newton-Raphson method. The proposed numerical method has capability to solve fuzzy polynomials as well as algebric ones. For this purpose, by using parametric form of fuzzy coefficients of fuzzy polynomial and Newton-Rphson method we can find its fuzzy roots. Finally, we illustrate our approach by nu...
متن کاملQuintic Polynomials of Hashimoto-tsunogai, Brumer, and Kummer
We establish an isomorphism between the quintic cyclic polynomials discovered by Hashimoto-Tsunogai and those arising from Kummer theory for certain algebraic tori. This enables us to solve the isomorphism problem for Hashimoto-Tsunogai polynomials and also Brumer’s quintic polynomials.
متن کاملClassifying Brumer’s quintic polynomials by weak Mordell-Weil groups
We develop a general classification theory for Brumer’s dihedral quintic polynomials by means of Kummer theory arising from certain elliptic curves. We also give a similar theory for cubic polynomials.
متن کاملNewton maps as matings of cubic polynomials
In this paper we prove existence and uniqueness of matings of a large class of renormalizable cubic polynomials with one fixed critical point and the other cubic polynomial having two fixed critical points. The resulting mating is a Newton map. Our result is the first part towards a conjecture by Tan Lei, stating that all (cubic) Newton maps can be described as matings or captures.
متن کامل