On the computation of Hermite-Humbert constants for real quadratic number fields

نویسندگان

  • Marcus WAGNER
  • Michael E. POHST
چکیده

We present algorithms for the computation of extreme binary Humbert forms in real quadratic number fields. With these algorithms we are able to compute extreme Humbert forms for the number fields Q( √ 13) and Q( √ 17). Finally we compute the Hermite-Humbert constant for the number field Q( √ 13).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the computation of Hermite-Humbert constants: the algorithm of Cohn revisited

We develop an algorithm for calculating Hermite-Humbert constants of real quadratic fields K with class number one. It reduces the necessary amount of computations considerably and could therefore be used for the calculation of two new Hermite-Humbert constants of the fields Q( √ 6), Q( √ 21), respectively. 2000 Mathematics Subject Classification: 11Y40; 11H55; 11R11

متن کامل

Hermite's Constant for Quadratic Number Fields

CONTENTS We develop a method to compute the Hermite-Humbert con1 . Introduction stants 7 K n of a real quadratic number field K, the analogue of the 2. Bounds for Minimal Vectors of Humbert Forms classical Hermite constant 7 n when Q is replaced by a quadratic 3. Examples extension. In the case n = 2, the problem is equivalent to the deReferences termination of lowest points of fundamental doma...

متن کامل

On the real quadratic fields with certain continued fraction expansions and fundamental units

The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element  where $dequiv 2,3( mod  4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and  $n_d$ and $m_d...

متن کامل

Subexponential Class Group Computation in Quadratic Orders (abstract)

In 1989, the first subexponential algorithm for computing the class group of an imaginary quadratic order was introduced by Hafner and McCurley. Their algorithm is based on an integer factorization algorithm due to Seysen, and is conditional on the truth of the Extended Riemann Hypothesis. Not long after, their result was generalized to arbitrary algebraic number fields by Buchmann. Efficient v...

متن کامل

Archiv der Mathematik On the unimodularity of minimal vectors of Humbert forms

1. Summary. If S = (S 1 ,. .. , S m) is an m-tuple of n × n positive definite symmetric real matrices (= Humbert form) and K is a real number field of degree m with ring of integers O K , a vector u ∈ O n K is called minimal if S[u] = Min{S[v] | v ∈ O n K − {0}}, where S[v] = i S i [v i ] and v i = i-th conjugate of v. In this note we show that any Humbert form S has a unimodular minimal vector...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005