Low venular shear rates promote leukocyte-dependent recruitment of adherent platelets.
نویسندگان
چکیده
The influence of reductions in venular shear rate on platelet-endothelial (P/E) cell adhesion has not been previously addressed. The objectives of this study were to define the effects of reductions in venular shear rate on P/E cell adhesion and to determine the interdependence of P/E cell adhesion and leukocyte-endothelial (L/E) cell adhesion at low shear rates. Intravital videomicroscopy was used to quantify P/E and L/E cell adhesion in rat mesenteric venules exposed to shear rates ranging between 118 +/- 9 and 835 +/- 44 s(-1). Shear rate was altered in postcapillary venules by rapid, graded blood withdrawal, without retransfusion of shed blood. Reducing shear rate from >600 s(-1) to <200 s(-1) resulted in an eightfold increase in L/E cell adhesion, whereas P/E cell adhesion increased 18-fold. A blocking antibody directed against P-selectin blunted both the P/E and L/E cell adhesion elicited by low shear rates. Immunoneutralization of CD11/CD18 on leukocytes or rendering animals neutropenic also blocked the shear rate-dependent recruitment of both platelets and leukocytes. These findings indicate that 1) low shear rates promote P/E and L/E cell adhesion in mesenteric venules, and 2) adherent neutrophils (mediated by CD11/CD18) create a platform onto which platelets can bind to the venular wall at low shear rates.
منابع مشابه
Leukotriene B4 mediates shear rate-dependent leukocyte adhesion in mesenteric venules.
Previous studies have demonstrated that low shear rates promote leukocyte adherence to microvascular endothelium in postcapillary venules. The objective of this study was to determine whether an accumulation of inflammatory mediators such as platelet activating factor and leukotriene B4 is responsible for shear rate-dependent leukocyte-endothelial cell adhesion. Postcapillary venules (25-39 mic...
متن کاملConcentration-dependent effects of bradykinin on leukocyte recruitment and venular hemodynamics in rat mesentery.
The results of several recent studies indicate that bradykinin protects tissues against the deleterious effects of ischemia-reperfusion (I/R). However, other studies indicate that bradykinin can act as a proinflammatory agent, inducing P-selectin expression, the formation of chemotactic stimuli, and endothelial barrier disruption. In the present study, we used intravital microscopic techniques ...
متن کاملAHEART July 46/1
Shigematsu, Sakuji, Shuji Ishida, Dean C. Gute, and Ronald J. Korthuis. Concentration-dependent effects of bradykinin on leukocyte recruitment and venular hemodynamics in rat mesentery. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H152–H160, 1999.—The results of several recent studies indicate that bradykinin protects tissues against the deleterious effects of ischemia-reperfusion (I/R). Howe...
متن کاملMechanisms of platelet and leukocyte recruitment in experimental colitis.
Both leukocytes and platelets accumulate in the colonic microvasculature during experimental colitis, leading to microvascular dysfunction and tissue injury. The objective of this study was to determine whether the recruitment of leukocytes and platelets in inflamed colonic venules are codependent processes. The rolling and adherence of leukocytes and platelets in colonic venules of mice with d...
متن کاملChemokine fractalkine mediates leukocyte recruitment to inflammatory endothelial cells in flowing whole blood: a critical role for P-selectin expressed on activated platelets.
BACKGROUND The membrane-bound chemokine fractalkine (CX3CL1) is expressed on various cell types such as activated endothelial cells and has been implicated in the inflammatory process of atherosclerosis. The aim of the present study was to dissect the role of fractalkine in leukocyte recruitment to inflamed endothelium under arterial shear forces. METHODS AND RESULTS With the use of immunoflu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 284 1 شماره
صفحات -
تاریخ انتشار 2003