THIS1 is a putative lipase that regulates tillering, plant height, and spikelet fertility in rice.
نویسندگان
چکیده
Proper branching and successful reproductive growth is of great importance for rice productivity. Substantial progress has been made in uncovering the molecular mechanisms underlying tillering control and spikelet sterility. However, rice tillering is developmentally controlled, and how it is regulated coordinately with reproductive growth remains unclear. This study characterized a rice mutant, the most obvious phenotypes of which are high tillering, reduced height, and infertile spikelets (named this1). Similarly to the high tiller number and dwarf mutants in rice, the increased tiller number of this1 plants is ascribed to the release of tiller bud outgrowth rather than to increased tiller bud formation. In the this1 mutant, however, the accelerated rate of branching was delayed until the stem elongation stage, while other mutants lost the ability to control branching at all developmental stages. The seed-setting rate of this1 was less than half that of the wild type, owing to defects in pollen maturation, anther dehiscence, and flower opening. Histological analyses showed that the mutation in this1 resulted in anisotropic cell expansion and cell division. Using a map-based cloning approach, This1 was found to encode a class III lipase. Homology searches revealed that THIS1 is conserved in both monocots and eudicots, suggesting that it plays fundamental role in regulating branch and spikelet fertility, as well as other aspects of developmental control. The relative change in expression of marker genes highlighted the possibility that This1 is involved in phytohormone signalling pathways, such as those for strigolactone and auxin. Thus, This1 provides joint control between shoot branching and reproductive development.
منابع مشابه
A putative lipase gene EXTRA GLUME1 regulates both empty-glume fate and spikelet development in rice
Recent studies have shown that molecular control of inner floral organ identity appears to be largely conserved between monocots and dicots, but little is known regarding the molecular mechanism underlying development of the monocot outer floral organ, a unique floral structure in grasses. In this study, we report the cloning of the rice EXTRA GLUME1 (EG1) gene, a putative lipase gene that spec...
متن کاملEffect of time of nitrogen application on spikelet differentiation and degeneration of rice
A study was conducted in the field to identify the N application stages which greatly determine spikelet differentiation and degeneration of rice (Oryza sativa L.). Spikelet differentiation and degeneration were greatly influenced by time of N application. N application at the neck-node differentiation stage significantly increased spikelet differentiation and that at the active meiosis stage s...
متن کاملEffect of Nitrogen Sources for Spikelet Sterility and Yield of Boro Rice Varieties
Rice yield can be increased in many ways such as developing new high yielding varieties or adopting proper agronomic management to the existing varieties. Proper fertilization is an important management practice to increase rice yield. Proper fertilization can markedly increase the yield and improve the quality of rice [1]. Nitrogenous fertilizer has immense effect on rice yield throughout the ...
متن کاملEffect of Foliar Application of Phytoprotectants on Yield of Rice (Oryza sativa Cv. Shiroudi) under Drought Stress
Drought is one of the most important factors limiting crop yield and foliar application of phytoprotectants is an important management strategy for increasing crop resistance to drought stress. This research was conducted at Rice Research Station of Tonekabon, Iran, in 2018 by using a split-plot based on a Randomized Complete Block Design (RCBD) with three replicates. Main plots were irrigation...
متن کاملCoordinated regulation of vegetative and reproductive branching in rice.
Grasses produce tiller and panicle branching at vegetative and reproductive stages; the branching patterns largely define the diversity of grasses and constitute a major determinant for grain yield of many cereals. Here we show that a spatiotemporally coordinated gene network consisting of the MicroRNA 156 (miR156/)miR529/SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) and miR172/APETALA2 (AP2) pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 64 14 شماره
صفحات -
تاریخ انتشار 2013