The effects of amino acids on glucose metabolism of isolated rat skeletal muscle are independent of insulin and the mTOR/S6K pathway.

نویسندگان

  • Karin Stadlbauer
  • Barbara Brunmair
  • Zsuzsanna Szöcs
  • Michael Krebs
  • Anton Luger
  • Clemens Fürnsinn
چکیده

Two mechanisms have been proposed for the modulation of skeletal muscle glucose metabolism by amino acids. Whereas studies on humans and cultured cells suggested acute insulin desensitization via mammalian target of rapamycin (mTOR) and its downstream target p70 S6 kinase (S6K), investigations using native specimens of rat muscle hinted at impairment of glucose oxidation by competition for mitochondrial oxidation. To better understand these seemingly contradictory findings, we explored the effects of high concentrations of mixed amino acids on fuel metabolism and S6K activity in freshly isolated specimens of rat skeletal muscle. In this setting, increasing concentrations of amino acids dose-dependently reduced the insulin-stimulated rates of CO(2) production from glucose and palmitate (decrease in glucose oxidation induced by addition of 5.5, 11, 22, and 44 mmol/l amino acids:--16 +/- 3, -25 +/- 7, -44 +/- 4, -62 +/- 4%; P < 0.02 each). This effect could not be attributed to insulin desensitization, because it was not accompanied by any reduction of insulin-stimulated glucose transport [+12 +/- 16, +17 +/- 22, +21 +/- 33, +13 +/- 12%; all nonsignificant (NS)] or glycogen synthesis (+1 +/- 6, -5 +/- 6, -9 +/- 8, +6 +/- 5%; all NS) and because it persisted without insulin stimulation. Abrogation of S6K activity by the mTOR blocker rapamycin failed to counteract amino acid-induced inhibition of glucose and palmitate oxidation, which therefore was obviously independent of mTOR/S6K signaling (decrease in glucose oxidation by addition of 44 mmol/l amino acids: without rapamycin, -60 +/- 4%; with rapamycin, -50 +/- 13%; NS). We conclude that amino acids can directly affect muscle glucose metabolism via two mechanisms, mTOR/S6K-mediated insulin desensitization and mitochondrial substrate competition, with the latter predominating in isolated rat muscle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Catalytic Subunit of the System L1 Amino Acid Transporter (Slc7a5) Facilitates Nutrient Signalling in Mouse Skeletal Muscle

The System L1-type amino acid transporter mediates transport of large neutral amino acids (LNAA) in many mammalian cell-types. LNAA such as leucine are required for full activation of the mTOR-S6K signalling pathway promoting protein synthesis and cell growth. The SLC7A5 (LAT1) catalytic subunit of high-affinity System L1 functions as a glycoprotein-associated heterodimer with the multifunction...

متن کامل

تأثیر 4 هفته تمرین تناوبی با شدت بالا بر محتوای پروتئین‌های AKT1، mTOR، P70S6K1 و 4E-BP1 در عضله اسکلتی نعلی موش‌های صحرایی مبتلا به دیابت نوع 2 یک مطالعه تجربی

Background and Objectives: The most important mechanism of protein synthesis muscle is the mTORC1 pathway in skeletal muscle in which very important proteins play role. Diabetes disturbs this pathway through generating resistance to insulin. The effect of high intensity interval training (HIIT) has not been studied yet on this important pathway in type 2 diabetes. Therefore, the purpose of the ...

متن کامل

Unlike insulin, amino acids stimulate p70S6K but not GSK-3 or glycogen synthase in human skeletal muscle.

Insulin stimulates muscle glucose disposal via both glycolysis and glycogen synthesis. Insulin activates glycogen synthase (GS) in skeletal muscle by phosphorylating PKB (or Akt), which in turn phosphorylates and inactivates glycogen synthase kinase 3 (GSK-3), with subsequent activation of GS. A rapamycin-sensitive pathway, most likely acting via ribosomal 70-kDa protein S6 kinase (p70(S6K)), h...

متن کامل

An amino acid mixture enhances insulin-stimulated glucose uptake in isolated rat epitrochlearis muscle.

Protein and certain amino acids (AA) have been found to lower blood glucose. Although these glucose-lowering AA are important modulators of skeletal muscle metabolism, their impact on muscle glucose uptake remains unclear. We therefore examined how an AA mixture consisting of 2 mM isoleucine, 0.012 mM cysteine, 0.006 mM methionine, 0.0016 mM valine, and 0.014 mM leucine impacts skeletal muscle ...

متن کامل

The Mammalian target of rapamycin pathway regulates nutrient-sensitive glucose uptake in man.

The nutrient-sensitive kinase mammalian target of rapamycin (mTOR) and its downstream target S6 kinase (S6K) are involved in amino acid-induced insulin resistance. Whether the mTOR/S6K pathway directly modulates glucose metabolism in humans is unknown. We studied 11 healthy men (29 years old, BMI 23 kg/m(2)) twice in random order after oral administration of 6 mg rapamycin, a specific mTOR inhi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 297 3  شماره 

صفحات  -

تاریخ انتشار 2009