Role of transporters and ion channels in neuronal injury under hypoxia.
نویسندگان
چکیده
The aims of the current study were to 1) examine the effects of hypoxia and acidosis on cultured cortical neurons and 2) explore the role of transporters and ion channels in hypoxic injury. Cell injury was measured in cultured neurons or hippocampal slices following hypoxia (1% O(2)) or acidosis (medium pH 6.8) treatment. Inhibitors of transporters and ion channels were employed to investigate their roles in hypoxic injury. Our results showed that 1) neuronal damage was apparent at 5-7 days of hypoxia exposure, i.e., 36-41% of total lactate dehydrogenase was released to medium and 2) acidosis alone did not lead to significant injury compared with nonacidic, normoxic controls. Pharmacological studies revealed 1) no significant difference in neuronal injury between controls (no inhibitor) and inhibition of Na(+)-K(+)-ATP pump, voltage-gated Na(+) channel, ATP-sensitive K(+) channel, or reverse mode of Na(+)/Ca(2+) exchanger under hypoxia; however, 2) inhibition of NBCs with 500 microM DIDS did not cause hypoxic death in either cultured cortical neurons or hippocampal slices; 3) in contrast, inhibition of Na(+)/H(+) exchanger isoform 1 (NHE1) with either 10 microM HOE-642 or 2 microM T-162559 resulted in dramatic hypoxic injury (+95% for HOE-642 and +100% for T-162559 relative to normoxic control, P < 0.001) on treatment day 3, when no death occurred for hypoxic controls (no inhibitor). No further damage was observed by NHE1 inhibition on treatment day 5. We conclude that inhibition of NHE1 accelerates hypoxia-induced neuronal damage. In contrast, DIDS rescues neuronal death under hypoxia. Hence, DIDS-sensitive mechanism may be a potential therapeutic target.
منابع مشابه
O 13: Ion Channels in Autoimmune Neurodegeneration
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system characterized by widespread inflammation, focal demyelination and a variable degree of axonal and neuronal loss. Ionic conductances regulate T cell activation as well as neuronal function and thus have been found to play a crucial role in MS pathogenesis. Since present therapeutical approaches are only parti...
متن کاملNeuroprotection of a sesamin derivative, 1, 2-bis [(3-methoxy- phenyl) methyl] ethane-1, 2-dicaroxylic acid (MMEDA) against ischemic and hypoxic neuronal injury
Objective(s): Stroke may cause severe neuronal damage. The sesamin have been demonstrated to possess neuroprotection by its antioxidant and anti-inflammatory properties. One sesamin derivative was artificially composited, 1, 2-bis [(3-methoxyphenyl) methyl] ethane-1, 2-dicaroxylic acid (MMEDA) had been developed to study its antioxidative activity and neuroprotection. Materials and Methods: The...
متن کاملKey contributions of the Na / H exchanger subunit 1 and HCO 3 transporters in regulating neuronal cell fate in prolonged hypoxia Howard
HCO3 TRANSPORTERS and the Na /H exchanger (NHE) contribute in a major way to maintenance of ionic and pH homeostasis in neurons. The study by Xue et al. (17) demonstrates that, in prolonged neuronal hypoxia, inhibition of HCO3 transporters by DIDS is protective and inhibition of NHE by either HOE 643 or T-162559 results in increased cell death. These observations have important implications for...
متن کاملKey contributions of the Na+/H+ exchanger subunit 1 and HCO3- transporters in regulating neuronal cell fate in prolonged hypoxia.
HCO3 TRANSPORTERS and the Na /H exchanger (NHE) contribute in a major way to maintenance of ionic and pH homeostasis in neurons. The study by Xue et al. (17) demonstrates that, in prolonged neuronal hypoxia, inhibition of HCO3 transporters by DIDS is protective and inhibition of NHE by either HOE 643 or T-162559 results in increased cell death. These observations have important implications for...
متن کاملQuercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122
Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 294 2 شماره
صفحات -
تاریخ انتشار 2008