Genetic testing for monogenic diabetes using targeted next-generation sequencing in patients with maturity-onset diabetes of the young.
نویسندگان
چکیده
INTRODUCTION Molecular diagnosis of monogenic diabetes mellitus is important for individualized patient care. Next-generation sequencing (NGS) enables a simultaneous analysis of multiple genes in a single test. OBJECTIVES We aimed to assess the feasibility of using NGS for detecting mutations in a set of known monogenic diabetes gene mutations in a cohort of Polish patients with maturity-onset diabetes of the young (MODY) with earlier negative Sanger sequencing results for HNF1A-MODY or GCK-MODY. PATIENTS AND METHODS We selected a panel of 28 chromosomal genes in which mutations have been reported to cause monogenic diabetes. The MiSeq platform was used for NGS. An exon-capture assay was designed to include coding regions and splice sites. A total of 54 patients with existing negative Sanger sequencing screening results for HNF1A or GCK gene mutations were selected for the study. RESULTS NGS results were generated for all 54 patients and 9 positive controls with previously identified HNF1A or GCK gene mutation. All selected positive controls were confirmed by NGS. Among 28 genes, mutations were detected in 16. The type of the analyzed genetic changes was described in the NGS study as high (n = 3) or moderate (n = 76). Among the detected mutations, there were 4 known GCK gene mutations that had been previously missed in Sanger sequencing. So far, Sanger sequencing allowed us to confirm 21 gene mutations detected by NGS, and segregation with diabetes in 14 pedigrees. CONCLUSIONS Our pilot study using NGS for monogenic diabetes screening in the MODY cohort confirmed that it improves the detection of diabetes-related sequence differences. The screening with NGS should also include diabetic patients for whom Sanger-based screening for particular subtypes of MODY provided negative results.
منابع مشابه
Population-Based Assessment of a Biomarker-Based Screening Pathway to Aid Diagnosis of Monogenic Diabetes in Young-Onset Patients.
OBJECTIVE Monogenic diabetes, a young-onset form of diabetes, is often misdiagnosed as type 1 diabetes, resulting in unnecessary treatment with insulin. A screening approach for monogenic diabetes is needed to accurately select suitable patients for expensive diagnostic genetic testing. We used C-peptide and islet autoantibodies, highly sensitive and specific biomarkers for discriminating type ...
متن کاملMonogenic Forms of Diabetes
Types 1 and 2 diabetes have multiple and complex genetic influences that interact with environmental triggers, such as viral infections or nutritional excesses, to result in their respective phenotypes: young, lean, and insulin-dependence for type 1 diabetes patients or older, overweight, and often manageable by lifestyle interventions and oral medications for type 2 diabetes patients. A small ...
متن کاملMaturity-Onset Diabetes of the Young: What Do Clinicians Need to Know?
Maturity-onset diabetes of the young (MODY) is a monogenic form of diabetes that is characterized by an early onset, autosomal dominant mode of inheritance and a primary defect in pancreatic β-cell function. MODY represents less than 2% of all diabetes cases and is commonly misdiagnosed as type 1 or type 2 diabetes mellitus. At least 13 MODY subtypes with distinct genetic etiologies have been i...
متن کاملSpectrum of mutations in monogenic diabetes genes identified from high-throughput DNA sequencing of 6888 individuals
BACKGROUND Diagnosis of monogenic as well as atypical forms of diabetes mellitus has important clinical implications for their specific diagnosis, prognosis, and targeted treatment. Single gene mutations that affect beta-cell function represent 1-2% of all cases of diabetes. However, phenotypic heterogeneity and lack of family history of diabetes can limit the diagnosis of monogenic forms of di...
متن کاملMany faces of monogenic diabetes
Monogenic diabetes represents a heterogeneous group of disorders resulting from defects in single genes. Defects are categorized primarily into two groups: disruption of β-cell function or a reduction in the number of β-cells. A complex network of transcription factors control pancreas formation, and a dysfunction of regulators high in the hierarchy leads to pancreatic agenesis. Dysfunction amo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Polskie Archiwum Medycyny Wewnetrznej
دوره 125 11 شماره
صفحات -
تاریخ انتشار 2015