Myostatin levels in skeletal muscle of hibernating ground squirrels.

نویسندگان

  • Naomi E Brooks
  • Kathryn H Myburgh
  • Kenneth B Storey
چکیده

Myostatin, a negative regulator of muscle mass, is elevated during disuse and starvation. Mammalian hibernation presents a unique scenario, where animals are hypocaloric and in torpor, but the extent of muscle protein loss is minimized. We hypothesized that myostatin expression, which is usually increased early in disuse and under hypocaloric conditions, could be suppressed in this unique model. Skeletal muscle was collected from thirteen-lined ground squirrels, Spermophilus tridecemlineatus, at six time points during hibernation: control euthermic (CON); entrance into hibernation (ENT), body temperature (T(b)) falling; early hibernation (EHib), stable T(b) in torpor for 24 h; late hibernation (LHib), stable T(b) in torpor for 3 days; early arousal (EAr), T(b) rising; and arousal (AR), T(b) restored to 34-37°C for about 18 h. There was no significant increase of myostatin during ENT, EHib or LHib. Unexpectedly, there were approximately sixfold increases in myostatin protein levels as squirrels arose from torpor. The elevation during EAr remained high in AR, which represented an interbout time period. Mechanisms that could release the suppression or promote increased levels of myostatin were assessed. SMAD2 and phosphorylated SMAD2 were increased during EHib, but only the phosphorylated SMAD2 during AR mirrored increases in myostatin. Follistatin, a negative regulator of myostatin, did not follow the same time course as myostatin or its signaling pathway, indicating more control of myostatin at the signaling level. However, SMAD7, an inhibitory SMAD, did not appear to play a significant role during deep hibernation. Hibernation is an excellent natural model to study factors involved in the endogenous intracellular mechanisms controlling myostatin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impaired Skeletal Muscle Regeneration in the Absence of Fibrosis during Hibernation in 13-Lined Ground Squirrels

Skeletal muscle atrophy can occur as a consequence of immobilization and/or starvation in the majority of vertebrates studied. In contrast, hibernating mammals are protected against the loss of muscle mass despite long periods of inactivity and lack of food intake. Resident muscle-specific stem cells (satellite cells) are known to be activated by muscle injury and their activation contributes t...

متن کامل

Up-regulation of Long Non-coding RNA TUG1 in Hibernating Thirteen-lined Ground Squirrels

Mammalian hibernation is associated with multiple physiological, biochemical, and molecular changes that allow animals to endure colder temperatures. We hypothesize that long non-coding RNAs (lncRNAs), a group of non-coding transcripts with diverse functions, are differentially expressed during hibernation. In this study, expression levels of lncRNAsH19 and TUG1 were assessed via qRT-PCR in liv...

متن کامل

Managing anabolic steroids in pre-hibernating Arctic ground squirrels: obtaining their benefits and avoiding their costs.

Androgens have benefits, such as promoting muscle growth, but also significant costs, including suppression of immune function. In many species, these trade-offs in androgen action are reflected in regulated androgen production, which is typically highest only in reproductive males. However, all non-reproductive Arctic ground squirrels, irrespective of age and sex, have high levels of androgens...

متن کامل

Differential regulation of uncoupling protein gene homologues in multiple tissues of hibernating ground squirrels.

Nonshivering thermogenesis in brown adipose tissue (BAT) provides heat through activation of a mitochondrial uncoupling protein (UCP1), which causes futile electron transport cycles without the production of ATP. Recent discovery of two molecular homologues, UCP2, expressed in multiple tissues, and UCP3, expressed in muscle, has resulted in investigation of their roles in thermoregulatory physi...

متن کامل

Cloning and sequencing of myosin heavy chain isoform cDNAs in golden-mantled ground squirrels: effects of hibernation on mRNA expression.

The golden-mantled ground squirrel is a small rodent hibernator that demonstrates unusual myosin heavy chain (MHC) isoform plasticity during several months of torpor, punctuated by bouts of rewarming and shivering thermogenesis. We measured MHC mRNA levels to determine whether pretranslational control mechanisms were responsible for differences in MHC2x protein expression, as we previously obse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 214 Pt 15  شماره 

صفحات  -

تاریخ انتشار 2011