Cu2O/Reduced Graphene Oxide Composites for the Photocatalytic Conversion of CO2
نویسندگان
چکیده
A facile one-step microwave-assisted chemical method has been successfully used for the synthesis of Cu2O/reduced graphene oxide (RGO) composites. Photocatalytic CO2 reduction was then investigated on the junction under ambient conditions. The RGO coating dramatically increases Cu2O activity for CO2 photoreduction to result in a nearly six times higher activity than the optimized Cu2O and 50 times higher activity than the Cu2O/RuOx junction in the 20(th) hour. Furthermore, an apparent initial quantum yield of approximately 0.34 % at 400 nm has been achieved by the Cu2O/RGO junction for CO2 photoreduction. The photocurrent of the junction is nearly double that of the blank Cu2O photocathode. The improved activity together with the enhanced stability of Cu2O is attributed to the efficient charge separation and transfer to RGO as well as the protection function of RGO, which was proved by XRD, SEM, TEM, X-ray photoelectron spectroscopy, photo-electrochemical, photoluminescence, and impedance characterizations. This study further presents useful information for other photocatalyst modification for efficient CO2 reduction without the need for a noble-metal co-catalyst.
منابع مشابه
Synthesis and investigation of structural, optical, and photocatalytic properties of BiFeO3/reduced graphene oxide nanocomposites
This study have been developed BiFeO3/reduced graphene oxide (BFO/RGO) nanocomposites by introduction of RGO in the structure of BFO nanoparticles in a short term ultrasonic treatment. The X-ray diffraction pattern and Fourier-transform infrared spectroscopy analysis reveal that the BFO/RGO composites were successfully synthesized. UV-visible absorption show that the introduction of RGO can eff...
متن کاملFabrication of TiO2 Nanosheet Aarrays/Graphene/Cu2O Composite Structure for Enhanced Photocatalytic Activities
TiO2 NSAs/graphene/Cu2O was fabricated on the carbon fiber to use as photocastalysts by coating Cu2O on the graphene (G) decorated TiO2 nanosheet arrays (NSAs). The research focus on constructing the composite structure and investigating the reason to enhance the photocatalytic ability. The morphological, structural, and photocatalytic properties of the as-synthesized products were characterize...
متن کاملMorphology Control and Photocatalysis Enhancement by in Situ Hybridization of Cuprous Oxide with Nitrogen-Doped Carbon Quantum Dots.
Cuprous oxide (Cu2O) is an attractive photocatalyst because of its visible-light-driven photocatalytic behavior, abundance, low toxicity, and environmental compatibility. However, its short electron diffusion length and low hole mobility result in low photocatalytic efficiency, which hinders its wider applications. Herein, we report an in situ method to introduce nitrogen-doped carbon dots (N-C...
متن کاملDirect synthesis of RGO/Cu2O composite films on Cu foil for supercapacitors
Reduced graphene oxide/cuprous oxide (RGO/Cu2O) composite films were directly synthesized on the surface of copper foil substrates through a straight redox reaction between GO and Cu foil via a hydrothermal approach. Characterization of the resultant composites with X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and field emission scanning electron microscope (FESEM) c...
متن کاملPhotocatalytic reduction synthesis of SrTiO3-graphene nanocomposites and their enhanced photocatalytic activity
UNLABELLED SrTiO3-graphene nanocomposites were prepared via photocatalytic reduction of graphene oxide by UV light-irradiated SrTiO3 nanoparticles. Fourier transformed infrared spectroscopy analysis indicates that graphene oxide is reduced into graphene. Transmission electron microscope observation shows that SrTiO3 nanoparticles are well assembled onto graphene sheets. The photocatalytic activ...
متن کامل