Biochemical properties, tissue expression, and gene structure of a short chain dehydrogenase/ reductase able to catalyze cis-retinol oxidation.
نویسندگان
چکیده
We have identified a retinol dehydrogenase (cRDH) that catalyzes the oxidation of 9-cis- but not all-trans-retinol and proposed that this enzyme plays an important role in synthesis of the transcriptionally active retinoid, 9-cis-retinoic acid. There is little information regarding either the biochemical properties of cRDH or how its 9-cis-retinol substrate is formed. We now report studies of the properties and expression of human and mouse cRDH and of the characteristics and location of the murine cRDH gene. Additionally, we report mouse hepatic 9-cis-retinol concentrations and demonstrate that 9-cis-retinol is formed in a time- and protein-dependent manner upon incubation of all-trans -retinol with cell homogenate. Human and mouse cRDH display similar substrate specificities for cis-isomers of retinol and retinaldehyde. Moreover, human and mouse cRDH show marked sensitivity to inhibition by 13-cis-retinoic acid, with both being inhibited by approximately 50% by 0.15 microm 13-cis-retinoic acid (for substrate concentrations of 10 microm). Lesser inhibition is seen for 9-cis- or all-trans-retinoic acids. Immunoblot analysis using antiserum directed against human cRDH demonstrates cRDH expression in several tissues from first trimester human fetuses, indicating that cRDH is expressed early in embryogenesis. Adult mouse brain, liver, kidney, and to a lesser extent small intestine and placenta express cRDH. The murine cRDH gene consists of at least 5 exons and spans approximately 6 kb of genomic DNA. Backcross analysis mapped the mouse cRDH gene to the most distal region of chromosome 10. Taken together, these data extend our understanding of the properties of cRDH and provide additional support for our hypothesis that cRDH may play an important role in 9-cis-retinoic acid formation.
منابع مشابه
Dual-substrate specificity short chain retinol dehydrogenases from the vertebrate retina.
Retinoids are chromophores involved in vision, transcriptional regulation, and cellular differentiation. Members of the short chain alcohol dehydrogenase/reductase superfamily catalyze the transformation of retinol to retinal. Here, we describe the identification and properties of three enzymes from a novel subfamily of four retinol dehydrogenases (RDH11-14) that display dual-substrate specific...
متن کاملThe identification of a 9-cis retinol dehydrogenase in the mouse embryo reveals a pathway for synthesis of 9-cis retinoic acid.
The ligand-controlled retinoic acid (RA) receptors and retinoid X receptors are important for several physiological processes, including normal embryonic development, but little is known about how their ligands, all-trans and 9-cis RA, are generated. Here we report the identification of a stereo-specific 9-cis retinol dehydrogenase, which is abundantly expressed in embryonic tissues known to be...
متن کاملStructural Insights into the Drosophila melanogaster Retinol Dehydrogenase, a Member of the Short-Chain Dehydrogenase/Reductase Family.
The 11-cis-retinylidene chromophore of visual pigments isomerizes upon interaction with a photon, initiating a downstream cascade of signaling events that ultimately lead to visual perception. 11-cis-Retinylidene is regenerated through enzymatic transformations collectively called the visual cycle. The first and rate-limiting enzymatic reaction within this cycle, i.e., the reduction of all-tran...
متن کاملComparative functional analysis of human medium-chain dehydrogenases, short-chain dehydrogenases/reductases and aldo-keto reductases with retinoids.
Retinoic acid biosynthesis in vertebrates occurs in two consecutive steps: the oxidation of retinol to retinaldehyde followed by the oxidation of retinaldehyde to retinoic acid. Enzymes of the MDR (medium-chain dehydrogenase/reductase), SDR (short-chain dehydrogenase/reductase) and AKR (aldo-keto reductase) superfamilies have been reported to catalyse the conversion between retinol and retinald...
متن کاملUnderstanding retinol metabolism: structure and function of retinol dehydrogenases.
Retinoids (vitamin A derivatives) have dual functions in physiology. 11-cisRetinal serves as the universal chromophore of the visual pigments in the eye, and the hormonal retinoids, mainly all-transand 9-cis-retinoic acid (RA),2 regulate the expression of target genes via activation of two classes of nuclear retinoid receptors, the retinoic acid receptors (RARs), and the retinoid X receptors (R...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 40 12 شماره
صفحات -
تاریخ انتشار 1999