From planar graphs to embedded graphs - a new approach to Kauffman and Vogel’s polynomial
نویسنده
چکیده
In [4] Kauffman and Vogel constructed a rigid vertex regular isotopy invariant for unoriented four-valent graphs embedded in three dimensional space. It assigns to each embedded graph G a polynomial, denoted [G], in three variables, A, B and a, satisfying the skein relations: [ ] = A[ ] + B[ ] + [ ] [ ] = a[ ], [ ] = a[ ] and is defined in terms of a state-sum and the Dubrovnik polynomial for links. Using the graphical calculus of [4] it is shown that the polynomial of a planar graph can be calculated recursively from that of planar graphs with less vertices, which also allows the polynomial of an embedded graph to be calculated without resorting to links. The same approach is used to give a direct proof of uniqueness of the (normalized) polynomial restricted to planar graphs. In the case B = A−1 and a = A, it is proved that for a planar graph G we have [G] = 2c−1(−A−A−1)v, where c is the number of connected components of
منابع مشابه
On the M-polynomial of planar chemical graphs
Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...
متن کاملTopological notions for Kauffman and Vogel’s polynomial
In [2] Kauffman and Vogel constructed a rigid vertex regular isotopy invariant for unoriented four-valent graphs embedded in three dimensional space. It assigns to each embedded graph G a polynomial, denoted [G], in three variables, A, B and a, satisfying the skein relations: [ ] = A[ ] + B[ ] + [ ] [ ] = a[ ], [ ] = a[ ] and is defined in terms of a state-sum and the Dubrovnik polynomial for l...
متن کاملThe Kauffman Bracket and the Bollobás-riordan Polynomial of Ribbon Graphs
For a ribbon graph G we consider an alternating link LG in the 3-manifold G× I represented as the product of the oriented surface G and the unit interval I . We show that the Kauffman bracket [LG] is an evaluation of the recently introduced Bollobás-Riordan polynomial RG. This results generalizes the celebrated relation between Kauffman bracket and Tutte polynomial of planar graphs.
متن کاملDedicated to Askold Khovanskii on the occasion of his 60th birthday THE KAUFFMAN BRACKET OF VIRTUAL LINKS AND THE BOLLOBÁS-RIORDAN POLYNOMIAL
We show that the Kauffman bracket [L] of a checkerboard colorable virtual link L is an evaluation of the Bollobás-Riordan polynomial RGL of a ribbon graph associated with L. This result generalizes the celebrated relation between the classical Kauffman bracket and the Tutte polynomial of planar graphs.
متن کاملThe Kauffman Bracket of Virtual Links and the Bollobás–riordan Polynomial
We show that the Kauffman bracket [L] of a checkerboard colorable virtual link L is an evaluation of the Bollobás–Riordan polynomial RGL of a ribbon graph associated with L. This result generalizes the celebrated relation between the classical Kauffman bracket and the Tutte polynomial of planar graphs. 2000 Math. Subj. Class. 57M15, 57M27, 05C10, 05C22.
متن کامل