Subsystem surface codes with three-qubit check operators
نویسندگان
چکیده
We propose a simplified version of the Kitaev’s surface code in which error correction requires only three-qubit parity measurements for Pauli operators XXX and ZZZ. The new code belongs to the class of subsystem stabilizer codes. It inherits many favorable properties of the standard surface code such as encoding of multiple logical qubits on a planar lattice with punctured holes, efficient decoding by either minimum-weight matching or renormalization group methods, and high error threshold. The new subsystem surface code (SSC) gives rise to an exactly solvable Hamiltonian with 3-qubit interactions, topologically ordered ground state, and a constant energy gap. We construct a local unitary transformation mapping the SSC Hamiltonian to the one of the ordinary surface code thus showing that the two Hamiltonians belong to the same topological class. We describe error correction protocols for the SSC and determine its error thresholds under several natural error models. In particular, we show that the SSC has error threshold approximately 0.6% for the standard circuit-based error model studied in the literature. We also consider a model in which three-qubit parity operators can be measured directly. We show that the SSC has error threshold approximately 0.97% in this setting.
منابع مشابه
Efficient fault-tolerant decoding of topological color codes
Topological color codes defined by the 4.8.8 semiregular lattice feature geometrically local check operators and admit transversal implementation of the entire Clifford group, making them promising candidates for fault-tolerant quantum computation. Recently, several efficient algorithms for decoding the syndrome of color codes were proposed. Here, we modify one of these algorithms to account fo...
متن کاملSimple scheme for encoding and decoding a qubit in unknown state for various topological codes
We present a scheme for encoding and decoding an unknown state for CSS codes, based on syndrome measurements. We illustrate our method by means of Kitaev toric code, defected-lattice code, topological subsystem code and 3D Haah code. The protocol is local whenever in a given code the crossings between the logical operators consist of next neighbour pairs, which holds for the above codes. For su...
متن کاملLogical-operator tradeoff for local quantum codes
We study the structure of logical operators in localD-dimensional quantum codes, considering both subsystem codes with geometrically local gauge generators and codes defined by geometrically local commuting projectors. We show that if the code distance is d , then any logical operator can be supported on a set of specified geometry containing d̃ qubits, where d̃d1/(D−1) = O(n) and n is the code l...
متن کاملAsymmetric and Symmetric Subsystem BCH Codes and Beyond
Recently, the theory of quantum error control codes has been extended to subsystem codes over symmetric and asymmetric quantum channels – qubit-flip and phase-shift errors may have equal or different probabilities. Previous work in constructing quantum error control codes has focused on code constructions for symmetric quantum channels. In this paper, we develop a theory and establish the conne...
متن کاملOn Quantum and Classical Error Control Codes: Constructions and Applications
It is conjectured that quantum computers are able to solve certain problems more quickly than any deterministic or probabilistic computer. For instance, Shor’s algorithm is able to factor large integers in polynomial time on a quantum computer. A quantum computer exploits the rules of quantum mechanics to speed up computations. However, it is a formidable task to build a quantum computer, since...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Quantum Information & Computation
دوره 13 شماره
صفحات -
تاریخ انتشار 2013