Direct Evidence of Conformational Changes Associated with Voltage Gating in a Voltage Sensor Protein by Time-Resolved X-ray/Neutron Interferometry
نویسندگان
چکیده
The voltage sensor domain (VSD) of voltage-gated cation (e.g., Na(+), K(+)) channels central to neurological signal transmission can function as a distinct module. When linked to an otherwise voltage-insensitive, ion-selective membrane pore, the VSD imparts voltage sensitivity to the channel. Proteins homologous with the VSD have recently been found to function themselves as voltage-gated proton channels or to impart voltage sensitivity to enzymes. Determining the conformational changes associated with voltage gating in the VSD itself in the absence of a pore domain thereby gains importance. We report the direct measurement of changes in the scattering-length density (SLD) profile of the VSD protein, vectorially oriented within a reconstituted phospholipid bilayer membrane, as a function of the transmembrane electric potential by time-resolved X-ray and neutron interferometry. The changes in the experimental SLD profiles for both polarizing and depolarizing potentials with respect to zero potential were found to extend over the entire length of the isolated VSD's profile structure. The characteristics of the changes observed were in qualitative agreement with molecular dynamics simulations of a related membrane system, suggesting an initial interpretation of these changes in terms of the VSD's atomic-level 3-D structure.
منابع مشابه
Direct physical measure of conformational rearrangement underlying potassium channel gating.
In response to membrane depolarization, voltage-gated ion channels undergo a structural rearrangement that moves charges or dipoles in the membrane electric field and opens the channel-conducting pathway. By combination of site-specific fluorescent labeling of the Shaker potassium channel protein with voltage clamping, this gating conformational change was measured in real time. During channel ...
متن کاملThe voltage sensor in voltage-dependent ion channels.
In voltage-dependent Na, K, or Ca channels, the probability of opening is modified by the membrane potential. This is achieved through a voltage sensor that detects the voltage and transfers its energy to the pore to control its gate. We present here the theoretical basis of the energy coupling between the electric field and the voltage, which allows the interpretation of the gating charge that...
متن کاملVoltage-dependent conformational changes in human Ca(2+)- and voltage-activated K(+) channel, revealed by voltage-clamp fluorometry.
Large conductance voltage- and Ca(2+)-activated K(+) (BK(Ca)) channels regulate important physiological processes such as neurotransmitter release and vascular tone. BK(Ca) channels possess a voltage sensor mainly represented by the S4 transmembrane domain. Changes in membrane potential displace the voltage sensor, producing a conformational change that leads to channel opening. By site-directe...
متن کاملMolecular basis of the interaction between gating modifier spider toxins and the voltage sensor of voltage-gated ion channels
Voltage-sensor domains (VSDs) are modular transmembrane domains of voltage-gated ion channels that respond to changes in membrane potential by undergoing conformational changes that are coupled to gating of the ion-conducting pore. Most spider-venom peptides function as gating modifiers by binding to the VSDs of voltage-gated channels and trapping them in a closed or open state. To understand t...
متن کاملFast and Slow Voltage Sensor Movements in HERG Potassium Channels
HERG encodes an inwardly-rectifying potassium channel that plays an important role in repolarization of the cardiac action potential. Inward rectification of HERG channels results from rapid and voltage-dependent inactivation gating, combined with very slow activation gating. We asked whether the voltage sensor is implicated in the unusual properties of HERG gating: does the voltage sensor move...
متن کامل