A Feed-Forward Neural Networks-Based Nonlinear Autoregressive Model for Forecasting Time Series

نویسندگان

  • Julián A. Pucheta
  • Cristian Rodrìguez Rivero
  • Martín R. Herrera
  • Carlos A. Salas
  • Hector D. Patiño
  • Benjamín R. Kuchen
چکیده

Palabras clave Redes neuronales, pronóstico de series temporales, parámetro de Hurst, ecuación Mackey-Glass.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

متن کامل

Which Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?

Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...

متن کامل

Time series forecasting using neural networks

Recent studies have shown the classification and prediction power of the Neural Networks. It has been demonstrated that a NN can approximate any continuous function. Neural networks have been successfully used for forecasting of financial data series. The classical methods used for time series prediction like Box-Jenkins or ARIMA assumes that there is a linear relationship between inputs and ou...

متن کامل

A Feed-Forward Neural Networks-Based Nonlinear Autoregressive Model for Forecasting Time Series Modelo Auto Regresivo no Lineal Basado en Redes Neuronales Multicapa para Pronóstico de Series Temporales

In this work a feed-forward NN based NAR model for forecasting time series is presented. The learning rule used to adjust the NN weights is based on the LevenbergMarquardt method. In function of the long or short term stochastic dependence of the time series, we propose an online heuristic law to set the training process and to modify the NN topology. The approach is tested over five time serie...

متن کامل

A Nonlinear Autoregressive Model with Exogenous Variables Neural Network for Stock Market Timing: The Candlestick Technical Analysis

In this paper, the nonlinear autoregressive model with exogenous variables as a new neural network is used for timing of the stock markets on the basis of the technical analysis of Japanese Candlestick. In this model, the “nonlinear autoregressive model with exogenous variables” is an analyzer. For a more reliable comparison, here (like the literature) two approaches of  Raw-based and Signal-ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computación y Sistemas

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2011