Invariant Metrics on G-spaces
ثبت نشده
چکیده
Let X be a G-space such that the orbit space X/G is metrizable. Suppose a family of slices is given at each point of X. We study a construction which associates, under some conditions on the family of slices, with any metric on X/G an invariant metric on X. We show also that a family of slices with the required properties exists for any action of a countable group on a locally compact and locally connected metric space.
منابع مشابه
Shift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups
We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...
متن کاملInvariant Einstein Metrics on Some Homogeneous Spaces of Classical Lie Groups
A Riemannian manifold (M, ρ) is called Einstein if the metric ρ satisfies the condition Ric(ρ) = c · ρ for some constant c. This paper is devoted to the investigation of G-invariant Einstein metrics with additional symmetries, on some homogeneous spaces G/H of classical groups. As a consequence, we obtain new invariant Einstein metrics on some Stiefel manifolds SO(n)/SO(l), and on the symplecti...
متن کاملFrames and Homogeneous Spaces
Let be a locally compact non?abelian group and be a compact subgroup of also let be a ?invariant measure on the homogeneous space . In this article, we extend the linear operator as a bounded surjective linear operator for all ?spaces with . As an application of this extension, we show that each frame for determines a frame for and each frame for arises from a frame in via...
متن کاملNew Examples of Homogeneous Einstein Metrics
A Riemannian metric is said to be Einstein if the Ricci curvature is a constant multiple of the metric. Given a manifold M , one can ask whether M carries an Einstein metric, and if so, how many. This fundamental question in Riemannian geometry is for the most part unsolved (cf. [Bes]). As a global PDE or a variational problem, the question is intractible. It becomes more manageable in the homo...
متن کاملSome Fixed Point Theorems in Generalized Metric Spaces Endowed with Vector-valued Metrics and Application in Linear and Nonlinear Matrix Equations
Let $mathcal{X}$ be a partially ordered set and $d$ be a generalized metric on $mathcal{X}$. We obtain some results in coupled and coupled coincidence of $g$-monotone functions on $mathcal{X}$, where $g$ is a function from $mathcal{X}$ into itself. Moreover, we show that a nonexpansive mapping on a partially ordered Hilbert space has a fixed point lying in the unit ball of the Hilbert space. ...
متن کاملCoupled coincidence point theorems for maps under a new invariant set in ordered cone metric spaces
In this paper, we prove some coupled coincidence point theorems for mappings satisfying generalized contractive conditions under a new invariant set in ordered cone metric spaces. In fact, we obtain sufficient conditions for existence of coupled coincidence points in the setting of cone metric spaces. Some examples are provided to verify the effectiveness and applicability of our results.
متن کامل