Sphingosine-1-phosphate protects proliferating endothelial cells from ceramide-induced apoptosis but not from DNA damage-induced mitotic death.
نویسندگان
چکیده
Because of the central role of the endothelium in tissue homeostasis, protecting the vasculature from radiation-induced death is a major concern in tissue radioprotection. Premitotic apoptosis and mitotic death are two prevalent cell death pathways induced by ionizing radiation. Endothelial cells undergo apoptosis after radiation through generation of the sphingolipid ceramide. However, if mitotic death is known as the established radiation-induced death pathway for cycling eukaryotic cells, direct involvement of mitotic death in proliferating endothelial radiosensitivity has not been clearly shown. In this study, we proved that proliferating human microvascular endothelial cells (HMEC-1) undergo two waves of death after exposure to 15 Gy radiation: an early premitotic apoptosis dependent on ceramide generation and a delayed DNA damage-induced mitotic death. The fact that sphingosine-1-phosphate (S1P), a ceramide antagonist, protects HMEC-1 only from membrane-dependent apoptosis but not from DNA damage-induced mitotic death proves the independence of the two pathways. Furthermore, adding nocodazole, a mitotic inhibitor, to S1P affected both cell death mechanisms and fully prevented radiation-induced death. If our results fit with the standard model in which S1P signaling inhibits ceramide-mediated apoptosis induced by antitumor treatments, such as radiotherapy, they exclude, for the first time, a significant role of S1P-induced molecular survival pathway against mitotic death. Discrimination between ceramide-mediated apoptosis and DNA damage-induced mitotic death may give the opportunity to define a new class of radioprotectors for normal tissues in which quiescent endothelium represents the most sensitive target, while excluding malignant tumor containing pro-proliferating angiogenic endothelial cells that are sensitive to mitotic death.
منابع مشابه
Overexpression of Acid Ceramidase Protects from Tumor Necrosis Factor–Induced Cell Death
Tumor necrosis factor (TNF) signals cell death and simultaneously induces generation of ceramide. To evaluate the contribution of ceramide to TNF-dependent cell death, we generated clones of the TNF-sensitive cell line L929 that constitutively overexpress human acid ceramidase (AC). Ceramidase, in concert with sphingosine kinase, metabolizes ceramide to sphingosine-1-phosphate (SPP), an inducer...
متن کاملSphingosine: a mediator of acute renal tubular injury and subsequent cytoresistance.
The goal of this study was to determine whether sphingosine and ceramide, second messengers derived from sphingolipid breakdown, alter kidney proximal tubular cell viability and their adaptive responses to further damage. Adult human kidney proximal tubular (HK-2) cells were cultured for 0-20 hr in the presence or absence of sphingosine, sphingosine metabolites (sphingosine 1-phosphate, dimethy...
متن کاملSphingosine-1-phosphate in inhibition of male germ cell apoptosis in the human testis.
It has been suggested that apoptosis is controlled by two intracellular sphingolipids, ceramide and sphingosine-1-phosphate (S1P), which are widely distributed in mammalian tissues. In the ovary, S1P was found to effectively block apoptosis caused by cancer therapies. Its role in male germ cell death, however, was unknown. In this study, we investigated the effects of ceramide and S1P on human ...
متن کاملLipopolysaccharide Induces Disseminated Endothelial Apoptosis Requiring Ceramide Generation
The endotoxic shock syndrome is characterized by systemic inflammation, multiple organ damage, circulatory collapse and death. Systemic release of tumor necrosis factor (TNF)-alpha and other cytokines purportedly mediates this process. However, the primary tissue target remains unidentified. The present studies provide evidence that endotoxic shock results from disseminated endothelial apoptosi...
متن کاملSphingosine-1-phosphate lyase potentiates apoptosis via p53- and p38-dependent pathways and is down-regulated in colon cancer.
Sphingolipid metabolites such as sphingosine-1-phosphate (S1P) and ceramide modulate apoptosis during development and in response to stress. In general, ceramide promotes apoptosis, whereas S1P stimulates cell proliferation and protects against apoptosis. S1P is irreversibly degraded by the enzyme S1P lyase (SPL). In this study, we show a crucial role for SPL in mediating cellular responses to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 67 4 شماره
صفحات -
تاریخ انتشار 2007