How Much Randomness Is Needed for Statistics?
نویسندگان
چکیده
In algorithmic randomness, when one wants to define a randomness notion with respect to some non-computable measure λ, a choice needs to be made. One approach is to allow randomness tests to access the measure λ as an oracle (which we call the “classical approach”). The other approach is the opposite one, where the randomness tests are completely effective and do not have access to the information contained in λ (we call this approach “Hippocratic”). While the Hippocratic approach is in general much more restrictive, there are cases where the two coincide. The first author showed in 2010 that in the particular case where the notion of randomness considered is Martin-Löf randomness and the measure λ is a Bernoulli measure, classical randomness and Hippocratic randomness coincide. In this paper, we prove that this result no longer holds for other notions of randomness, namely computable randomness and stochasticity.
منابع مشابه
TESTING FOR “RANDOMNESS” IN SPATIAL POINT PATTERNS, USING TEST STATISTICS BASED ON ONE-DIMENSIONAL INTER-EVENT DISTANCES
To test for “randomness” in spatial point patterns, we propose two test statistics that are obtained by “reducing” two-dimensional point patterns to the one-dimensional one. Also the exact and asymptotic distribution of these statistics are drawn.
متن کاملMediation Analysis Without Sequential Ignorability: Using Baseline Covariates Interacted with Random Assignment as Instrumental Variables
In randomized trials, researchers are often interested in mediation analysis to understand how a treatment works, in particular how much of a treatment’s effect is mediated by an intermediated variable and how much the treatment directly affects the outcome not through the mediator. The standard regression approach to mediation analysis assumes sequential ignorability of the mediator, that is t...
متن کاملHow Much Randomness Makes a Tool Randomized?
Most of presently used academic logic synthesis tools, including SIS and ABC, are fully deterministic. Up to the knowledge of the authors, this holds for all available commercial tools as well. This means that no random decisions are made; the algorithms fully rely on deterministic heuristics. In this paper we present several hints of insufficiency of such an approach and show examples of persp...
متن کاملA Bootstrap Method for Error Estimation in Randomized Matrix Multiplication
In recent years, randomized methods for numerical linear algebra have received growing interest as a general approach to large-scale problems. Typically, the essential ingredient of these methods is some form of randomized dimension reduction, which accelerates computations, but also creates random approximation error. In this way, the dimension reduction step encodes a tradeoff between cost an...
متن کاملEvaluation of Structure and Reproducibility of Cluster Solutions Using the Bootstrap
Segmentation results derived using cluster analysis depend on (1) the structure of the data and (2) algorithm parameters. Typically neither the data structure is assessed in advance of clustering nor is the sensitivity of the analysis to changes in algorithm parameters. We propose a benchmarking framework based on bootstrapping techniques that accounts for sample and algorithm randomness. This ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ann. Pure Appl. Logic
دوره 165 شماره
صفحات -
تاریخ انتشار 2012