Visual field representations and locations of visual areas V1/2/3 in human visual cortex.
نویسندگان
چکیده
The position, surface area and visual field representation of human visual areas V1, V2 and V3 were measured using fMRI in 7 subjects (14 hemispheres). Cortical visual field maps of the central 12 deg were measured using rotating wedge and expanding ring stimuli. The boundaries between areas were identified using an automated procedure to fit an atlas of the expected visual field map to the data. All position and surface area measurements were made along the boundary between white matter and gray matter. The representation of the central 2 deg of visual field in areas V1, V2, V3 and hV4 spans about 2100 mm2 and is centered on the lateral-ventral aspect of the occipital lobes at Talairach coordinates -29, -78, -11 and 25, -80, -9. The mean area between the 2-deg and 12-deg eccentricities for the primary visual areas was: V1: 1470 mm2; V2: 1115 mm2; and V3: 819 mm2. The sizes of areas V1, V2 and V3 varied by about a factor of 2.5 across individuals; the sizes of V1 and V2 are significantly correlated within individuals, but there is a very low correlation between V1 and V3. These in vivo measurements of normal human retinotopic visual areas can be used as a reference for comparison to unusual cases involving developmental plasticity, recovery from injury, identifying homology with animal models, or analyzing the computational resources available within the visual pathways.
منابع مشابه
Visual Field Maps in Human Cortex
Much of the visual cortex is organized into visual field maps: nearby neurons have receptive fields at nearby locations in the image. Mammalian species generally have multiple visual field maps with each species having similar, but not identical, maps. The introduction of functional magnetic resonance imaging made it possible to identify visual field maps in human cortex, including several near...
متن کاملVisual areas and spatial summation in human visual cortex
Functional MRI measurements can securely partition the human posterior occipital lobe into retinotopically organized visual areas (V1, V2 and V3) with experiments that last only 30 min. Methods for identifying functional areas in the dorsal and ventral aspect of the human occipital cortex, however, have not achieved this level of precision; in fact, different laboratories have produced inconsis...
متن کاملEffects of visual deprivation on epileptic activity in mature rat visual cortex
Effects of visual deprivation on the induction of epileptiform activity were studied in layer II/III of mature rat primary visual cortex. Field potentials were evoked by stimulation of layer IV in slices from control and dark-reared (OR) rats. Picrotoxin (PTX)-induced epileptic activity was characterized by spontaneous and evoked epileptic field potentials (EFPs). The results showed that OR s...
متن کاملAn fMRI study of human visual cortex in response to spatiotemporal properties of visual stimuli
ABSTRACT Background: The brain response to temporal frequencies (TF) has been already reported, but with no study reported for different TF with respect to various spatial frequencies (SF). Materials and Methods: fMRI was performed by 1.5T GE-system in 14 volunteers during checkerboard, with TFs of 4, 6, 8 and 10Hz in low and high SFs of 0.5 and 8cpd. Results: Average percentage BOLD signa...
متن کاملfMRI reveals greater within- than between-hemifield integration in the human lateral occipital cortex.
Early visual areas within each hemisphere (V1, V2, V3/VP, V4v) contain distinct representations of the upper and lower quadrants of the contralateral hemifield. As receptive field size increases, the retinotopy in higher-tier visual areas becomes progressively less distinct. Using functional magnetic resonance imaging (fMRI) to map the visual fields, we found that an intermediate level visual a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of vision
دوره 3 10 شماره
صفحات -
تاریخ انتشار 2003