Folate-modified lipid–polymer hybrid nanoparticles for targeted paclitaxel delivery
نویسندگان
چکیده
The purpose of this study was to develop a novel lipid-polymer hybrid drug carrier comprised of folate (FA) modified lipid-shell and polymer-core nanoparticles (FLPNPs) for sustained, controlled, and targeted delivery of paclitaxel (PTX). The core-shell NPs consist of 1) a poly(ε-caprolactone) hydrophobic core based on self-assembly of poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) amphiphilic copolymers, 2) a lipid monolayer formed with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (DSPE-PEG2000), 3) a targeting ligand (FA) on the surface, and were prepared using a thin-film hydration and ultrasonic dispersion method. Transmission electron microscopy and dynamic light scattering analysis confirmed the coating of the lipid monolayer on the hydrophobic polymer core. Physicochemical characterizations of PTX-loaded FLPNPs, such as particle size and size distribution, zeta potential, morphology, drug loading content, encapsulation efficiency, and in vitro drug release, were also evaluated. Fluorescent microscopy proved the internalization efficiency and targeting ability of the folate conjugated on the lipid monolayer for the EMT6 cancer cells which overexpress folate receptor. In vitro cytotoxicity assay demonstrated that the cytotoxic effect of PTX-loaded FLPNPs was lower than that of Taxol(®), but higher than that of PTX-loaded LPNPs (without folate conjugation). In EMT6 breast tumor model, intratumoral administration of PTX-loaded FLPNPs showed similar antitumor efficacy but low toxicity compared to Taxol(®). More importantly, PTX-loaded FLPNPs showed greater tumor growth inhibition (65.78%) than the nontargeted PTX-loaded LPNPs (48.38%) (P<0.05). These findings indicated that the PTX loaded-FLPNPs with mixed lipid monolayer shell and biodegradable polymer core would be a promising nanosized drug formulation for tumor-targeted therapy.
منابع مشابه
A multifunctional lipid nanoparticle for co-delivery of paclitaxel and curcumin for targeted delivery and enhanced cytotoxicity in multidrug resistant breast cancer cells
The objective of the work was to develop a multifunctional nanomedicine based on a folate-conjugated lipid nanoparticles loaded with paclitaxel and curcumin. The novel system combines therapeutic advantageous of efficient targeted delivery via folate and timed-release of curcumin and paclitaxel via 2-hydroxypropyl-ß-cyclodextrin, thereby overcoming multidrug resistance in breast cancer cells (M...
متن کاملFolate-containing reduction-sensitive lipid-polymer hybrid nanoparticles for targeted delivery of doxorubicin.
The development and evaluation of folate-targeted and reduction-triggered biodegradable nanoparticles are introduced to the research on targeted delivery of doxorubicin (DOX). This type of folate-targeted lipid-polymer hybrid nanoparticles (FLPNPs) is comprised of a poly(D,L-lactide-co-glycolide) (PLGA) core, a soybean lecithin monolayer, a monomethoxy-poly(ethylene glycol)-S-S-hexadecyl (mPEG-...
متن کاملFolate-decorated hybrid polymeric nanoparticles for chemically and physically combined paclitaxel loading and targeted delivery.
In this study, folate-functionalized hybrid polymeric nanoparticles (NPs) were prepared as carriers of low water solubility paclitaxel for tumor targeting, which were composed of monomethoxy-poly(ethylene glycol)-b-poly(lactide)-paclitaxel (MPEG-PLA-paclitaxel) and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS)-folate (TPGS-FOL). NPs with various weight ratios of MPEG-PLA-paclitaxel a...
متن کاملInternational Journal of Pharma and Bio Sciences V1 (2)2010 DEVELOPMENT AND CHARACTERIZATION OF FOLATE TARGETED NANOPARTICLE DRUG DELIVERY SYSTEM
The main objective of this study was to develop and characterize tumor selective folate conjugated PEG (Polyethylene glycol) polymeric nanoparticulate system for paclitaxel delivery. Paclitaxel -loaded poly (lacticco-glycolic acid) (PLGA) nanoparticles were prepared by the solvent evaporation method and characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and zeta ...
متن کاملMRI-guided targeting delivery of doxorubicin with reduction-responsive lipid-polymer hybrid nanoparticles
In recent years, there has been increasing interest in developing a multifunctional nanoscale platform for cancer monitoring and chemotherapy. However, there is still a big challenge for current clinic contrast agents to improve their poor tumor selectivity and response. Herein, we report a new kind of Gd complex and folate-coated redox-sensitive lipid-polymer hybrid nanoparticle (Gd-FLPNP) for...
متن کامل