Transposable element annotation of the rice genome
نویسندگان
چکیده
MOTIVATION The high content of repetitive sequences in the genomes of many higher eukaryotes renders the task of annotating them computationally intensive. Presently, the only widely accepted method of searching and annotating transposable elements (TEs) in large genomic sequences is the use of the RepeatMasker program, which identifies new copies of TEs by pairwise sequence comparisons with a library of known TEs. Profile hidden Markov models (HMMs) have been used successfully in discovering distant homologs of known proteins in large protein databases, but this approach has only rarely been applied to known model TE families in genomic DNA. RESULTS We used a combination of computational approaches to annotate the TEs in the finished genome of Oryza sativa ssp. japonica. In this paper, we discuss the strengths and the weaknesses of the annotation methods used. These approaches included: the default configuration of RepeatMasker using cross_match, an implementation of the Smith-Waterman-Gotoh algorithm; RepeatMasker using WU-BLAST for similarity searching; and the HMMER package, used to search for TEs with profile HMMs. All the results were converted into GFF format and post-processed using a set of Perl scripts. RepeatMasker was used in the case of most TE families. The WU-BLAST implementation of RepeatMasker was found to be manifold faster than cross_match with only a slight loss in sensitivity and was thus used to obtain the final set of data. HMMER was used in the annotation of the Mutator-like element (MULE) superfamily and the miniature inverted-repeat transposable element (MITE) polyphyletic group of families, for which large libraries of elements were available and which could be divided into well-defined families. The HMMER search algorithm was extremely slow for models over 1000 bp in length, so MULE families with members over 1000 bp long were processed with RepeatMasker instead. The main disadvantage of HMMER in this application is that, since it was developed with protein sequences in mind, it does not search the negative DNA strand. With the exception of TE families with essentially palindromic sequences, reverse complement models had to be created and run to compensate for this shortcoming. We conclude that a modification of RepeatMasker to incorporate libraries of profile HMMs in searches could improve the ability to detect degenerated copies of TEs. AVAILABILITY The Perl scripts and TE sequences used in construction of the RepeatMasker library and the profile HMMs are available upon request.
منابع مشابه
The TIGR Rice Genome Annotation Resource: improvements and new features
In The Institute for Genomic Research Rice Genome Annotation project (http://rice.tigr.org), we have continued to update the rice genome sequence with new data and improve the quality of the annotation. In our current release of annotation (Release 4.0; January 12, 2006), we have identified 42,653 non-transposable element-related genes encoding 49,472 gene models as a result of the detection of...
متن کاملThe institute for genomic research Osa1 rice genome annotation database.
We have developed a rice (Oryza sativa) genome annotation database (Osa1) that provides structural and functional annotation for this emerging model species. Using the sequence of O. sativa subsp. japonica cv Nipponbare from the International Rice Genome Sequencing Project, pseudomolecules, or virtual contigs, of the 12 rice chromosomes were constructed. Our most recent release, version 3, repr...
متن کاملThe Institute for Genomic Research Osa 1 Rice Genome Annotation Database 1
We have developed a rice (Oryza sativa) genome annotation database (Osa1) that provides structural and functional annotation for this emerging model species. Using the sequence of O. sativa subsp. japonica cv Nipponbare from the International Rice Genome Sequencing Project, pseudomolecules, or virtual contigs, of the 12 rice chromosomes were constructed. Our most recent release, version 3, repr...
متن کاملSurvey of transposable elements from rice genomic sequences.
Oryza sativa L. (domesticated rice) is a monocotyledonous plant, and its 430 Mb genome has been targeted for complete sequencing. We performed a high-resolution computer-based survey for transposable elements on 910 Kb of rice genomic DNA sequences. Both class I and II transposable elements were present, contributing 19.9% of the sequences surveyed. Class II elements greatly outnumbered class I...
متن کاملA new approach for annotation of transposable elements using small RNA mapping
Transposable elements (TEs) are mobile genomic DNA sequences found in most organisms. They so densely populate the genomes of many eukaryotic species that they are often the major constituents. With the rapid generation of many plant genome sequencing projects over the past few decades, there is an urgent need for improved TE annotation as a prerequisite for genome-wide studies. Analogous to th...
متن کاملA rice Tc1/mariner-like element transposes in yeast.
The Tc1/mariner transposable element superfamily is widely distributed in animal and plant genomes. However, no active plant element has been previously identified. Nearly identical copies of a rice (Oryza sativa) Tc1/mariner element called Osmar5 in the genome suggested potential activity. Previous studies revealed that Osmar5 encoded a protein that bound specifically to its own ends. In this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 20 2 شماره
صفحات -
تاریخ انتشار 2004