Acquired resistance to TRAIL-induced apoptosis in human ovarian cancer cells is conferred by increased turnover of mature caspase-3.
نویسندگان
چکیده
Little is known on how cancer cells can acquire resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). In this study, we established TRAIL-resistant cells from the TRAIL-sensitive human ovarian carcinoma cell line OVCAR3 to evaluate the potential mechanisms of acquired resistance to TRAIL. The selected resistant cells were cross-resistant to Fas ligand but remained sensitive to drug-induced apoptosis. Expression of TRAIL receptors was not altered in TRAIL-resistant OVCAR3 cells. Cleavage of caspase-8 and caspase-3 occurred in both TRAIL-resistant and TRAIL-sensitive cells. However, mature caspase-3 fragments were not detected by immunoblot in TRAIL-resistant cells and caspase-3 activity was significantly inhibited in these cells. The addition of proteasome inhibitors significantly increased TRAIL-induced apoptosis in resistant cells and enhanced the accumulation of mature caspase-3 fragments. Pretreatment with cycloheximide showed that active caspase-3 fragments have a high turnover rate in OVCAR3 R350 cells. X-linked inhibitor of apoptosis down-regulation by RNA interference also increased the accumulation of cleaved caspase-3 intermediates and resensitized TRAIL-resistant cells. Our findings show that altered turnover of mature caspase-3 may lead to acquired TRAIL resistance in ovarian cancer cells. Proteasome and X-linked inhibitor of apoptosis inhibitors could have a role in clinical situations to potentiate the cytotoxic effects of TRAIL in resistant tumor cells.
منابع مشابه
Kaempferol Sensitizes Human Ovarian Cancer Cells-OVCAR-3 and SKOV-3 to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)-Induced Apoptosis via JNK/ERK-CHOP Pathway and Up-Regulation of Death Receptors 4 and 5
BACKGROUND Ovarian cancer is the most common gynecological malignancies in women, with high mortality rates worldwide. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor (TNF) superfamily which preferentially induces apoptosis of cancer cells. However, acquired resistance to TRAIL hampers its therapeutic application. Identification of compou...
متن کاملInvestigation apoptotic effects of silver nanoparticles coated with Achillea biebersteinii extract on A2780 ovarian cancer cells
In recent years using of silver nanoparticles due to its unique properties was increased. Medical plant, the Achillea biebersteinii is rich in anti-cancers compounds. The aim of this study was to investigate the cytotoxicity effects of AgNPs synthesized using Achillea biebersteinii extract on human ovarian cancer A2780 cells. Cytotoxic effects of AgNPs with MTT test was performed at 48 hours in...
متن کاملKnockdown of MADD and c-FLIP overcomes resistance to TRAIL-induced apoptosis in ovarian cancer cells.
OBJECTIVE The clinical utility of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in the treatment of established human malignancies is limited by the development of resistance to TRAIL. We hypothesized that knockdown of map-kinase activating death domain containing protein (MADD), a TRAIL-resistance factor, may overcome TRAIL resistance in ovarian cancer cells. STUDY DESIGN M...
متن کاملSynergistic Effect of Subtoxic-dose Cisplatin and TRAIL to Mediate Apoptosis by Down-regulating Decoy Receptor 2 and Up-regulating Caspase-8, Caspase-9 and Bax Expression on NCI-H460 and A549 Cells
Objective(s): Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in tumor cells, more than half of tumors including non-small cell lung cancer (NSCLC) exhibit TRAIL-resistance. The purpose of this study was to determine whether subtoxic-dose cisplatin and TRAIL could synergistically enhance apoptosis on NSCLC cells and investigate its under...
متن کاملMecanismes de la resistance intrinseque a l'apoptose induite par TRAIL chez les cellules de cancer ovarien par
Epithelial ovarian cancer (EOC) cells often show increased activity of the PI3K/Akt pathway. In addition, we have previously shown that EOC ascites induce Akt activation in the tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-sensitive EOC cell line, CaOV3, leading to TRAIL-mediated apoptosis inhibition. In this study, we investigated the role of Akt in intrinsic resistance to TR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 5 3 شماره
صفحات -
تاریخ انتشار 2006