Diversity in cell motility reveals the dynamic nature of the formation of zebrafish taste sensory organs.

نویسندگان

  • Marina Soulika
  • Anna-Lila Kaushik
  • Benjamin Mathieu
  • Raquel Lourenço
  • Anna Z Komisarczuk
  • Sebastian Alejo Romano
  • Adrien Jouary
  • Alicia Lardennois
  • Nicolas Tissot
  • Shinji Okada
  • Keiko Abe
  • Thomas S Becker
  • Marika Kapsimali
چکیده

Taste buds are sensory organs in jawed vertebrates, composed of distinct cell types that detect and transduce specific taste qualities. Taste bud cells differentiate from oropharyngeal epithelial progenitors, which are localized mainly in proximity to the forming organs. Despite recent progress in elucidating the molecular interactions required for taste bud cell development and function, the cell behavior underlying the organ assembly is poorly defined. Here, we used time-lapse imaging to observe the formation of taste buds in live zebrafish larvae. We found that tg(fgf8a.dr17)-expressing cells form taste buds and get rearranged within the forming organs. In addition, differentiating cells move from the epithelium to the forming organs and can be displaced between developing organs. During organ formation, tg(fgf8a.dr17) and type II taste bud cells are displaced in random, directed or confined mode relative to the taste bud they join or by which they are maintained. Finally, ascl1a activity in the 5-HT/type III cell is required to direct and maintain tg(fgf8a.dr17)-expressing cells into the taste bud. We propose that diversity in displacement modes of differentiating cells acts as a key mechanism for the highly dynamic process of taste bud assembly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo imaging of emerging endocrine cells reveals a requirement for PI3K-regulated motility in pancreatic islet morphogenesis

The three-dimensional architecture of the pancreatic islet is integral to beta cell function, but the process of islet formation remains poorly understood due to the difficulties of imaging internal organs with cellular resolution. Within transparent zebrafish larvae, the developing pancreas is relatively superficial and thus amenable to live imaging approaches. We performed in vivo time-lapse ...

متن کامل

Fgf signaling controls pharyngeal taste bud formation through miR-200 and Delta-Notch activity.

Taste buds, the taste sensory organs, are conserved in vertebrates and composed of distinct cell types, including taste receptor, basal/presynaptic and support cells. Here, we characterize zebrafish taste bud development and show that compromised Fgf signaling in the larva results in taste bud reduction and disorganization. We determine that Fgf activity is required within pharyngeal endoderm f...

متن کامل

A New Multi-Objective Model for Dynamic Cell Formation Problem with Fuzzy Parameters

This paper proposes a comprehensive, multi-objective, mixed-integer, nonlinear programming (MINLP) model for a cell formation problem (CFP) under fuzzy and dynamic conditions aiming at: (1) minimizing the total cost which consists of the costs of intercellular movements and subcontracting parts as well as the cost of purchasing, operation, maintenance and reconfiguration of machines, (2) maximi...

متن کامل

Sublethal Effects of Cadmium Chloride to Testis of Zebrafish (Danio rerio)

Cadmium (Cd) is one of the most toxic environmental heavy metals to organisms. The prominent toxic effects of Cd on reproductive organs are very well known. Gonad histopathology is a valuable tool for the assessment of endocrine disruption compounds EDCs effects on fish. The aim of this study was to evaluate the reproductive toxicity of cadmium chloride (CdCl2) on histopathology of Zebrafish (D...

متن کامل

In vivo birthdating by BAPTISM reveals that trigeminal sensory neuron diversity depends on early neurogenesis.

Among sensory systems, the somatic sense is exceptional in its ability to detect a wide range of chemical, mechanical and thermal stimuli. How this sensory diversity is established during development remains largely elusive. We devised a method (BAPTISM) that uses the photoconvertible fluorescent protein Kaede to simultaneously analyze birthdate and cell fate in live zebrafish embryos. We found...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 143 11  شماره 

صفحات  -

تاریخ انتشار 2016