On the hyperbolicity of surfaces of general type with small c12
نویسندگان
چکیده
Surfaces of general type with positive second Segre number s2 := c 2 1 − c2 > 0 are known by results of Bogomolov to be algebraically quasihyperbolic i.e. with finitely many rational and elliptic curves. These results were extended by McQuillan in his proof of the Green-Griffiths conjecture for entire curves on such surfaces. In this work, we study hyperbolic properties of minimal surfaces of general type with minimal c21, known as Horikawa surfaces. In principle these surfaces should be the most difficult case for the above conjecture as illustrate the quintic surfaces in P. Using orbifold techniques, we exhibit infinitely many irreducible components of the moduli of Horikawa surfaces whose very generic member has no rational curves or even is algebraically hyperbolic. Moreover, we construct explicit examples of algebraically hyperbolic and quasi-hyperbolic orbifold Horikawa surfaces.
منابع مشابه
ON THE HYPERBOLICITY OF SURFACES OF GENERAL TYPE WITH SMALL c1
Surfaces of general type with positive second Segre number s2 := c1 − c2 > 0 are known by results of Bogomolov to be algebraically quasihyperbolic i.e. with finitely many rational and elliptic curves. These results were extended by McQuillan in his proof of the Green-Griffiths conjecture for entire curves on such surfaces. In this work, we study hyperbolic properties of minimal surfaces of gene...
متن کاملOn the hyperbolicity of surfaces of general type with small c 21
Surfaces of general type with positive second Segre number s2 := c 2 1 − c2 > 0 are known by the results of Bogomolov to be algebraically quasi-hyperbolic, that is, with finitely many rational and elliptic curves. These results were extended by McQuillan in his proof of the Green–Griffiths conjecture for entire curves on such surfaces. In this work, we study hyperbolic properties of minimal sur...
متن کاملThe Role of Funnels and Punctures in the Gromov Hyperbolicity of Riemann Surfaces
We prove results on geodesic metric spaces which guarantee that some spaces are not hyperbolic in the Gromov sense. We use these theorems in order to study the hyperbolicity of Riemann surfaces. We obtain a criterion on the genus of a surface which implies non-hyperbolicity. We also include a characterization of the hyperbolicity of a Riemann surface S∗ obtained by deleting a closed set from on...
متن کاملHyperbolicity of the family $f_c(x)=c(x-frac{x^3}{3})$
The aim of this paper is to present a proof of the hyperbolicity of the family $f_c(x)=c(x-frac{x^3}{3}), |c|>3$, on an its invariant subset of $mathbb{R}$.
متن کاملScrolls and Hyperbolicity
Using degeneration to scrolls, we give an easy proof of non–existence of curves of low genera on general surfaces in P of degree d ≥ 5. We show, along the same lines, boundedness of families of curves of small enough genera on general surfaces in P. We also show that there exist Kobayashi hyperbolic surfaces in P of degree d = 7 (a result so far unknown), and give a new construction of such sur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. London Math. Society
دوره 87 شماره
صفحات -
تاریخ انتشار 2013