Logic, Knowledge Representation, and Bayesian Decision Theory

نویسنده

  • David Poole
چکیده

In this paper I give a brief overview of recent work on uncertainty inAI, and relate it to logical representations. Bayesian decision theory and logic are both normative frameworks for reasoning that emphasize different aspects of intelligent reasoning. Belief networks (Bayesian networks) are representations of independence that form the basis for understanding much of the recent work on reasoning under uncertainty, evidential and causal reasoning, decision analysis, dynamical systems, optimal control, reinforcement learning and Bayesian learning. The independent choice logic provides a bridge between logical representations and belief networks that lets us understand these other representations and their relationship to logic and shows how they can extended to first-order rule-based representations. This paper discusses what the representations of uncertainty can bring to the computational logic community and what the computational logic community can bring to those studying reasoning under uncertainty. “It is remarkable that a science which began with the consideration of games of chance should become the most important object of human knowledge...The most important questions of life are, for the most part, really only problems of probability.” “The theory of probabilities is at bottom nothing but common sense reduced to calculus.” — Pierre Simon de Laplace (1794–1827)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Knowledge Representation Based on Possibilistic and Necessary Bayesian Networks

Within the framework proposed in this paper, we address the issue of extending the certain networks to a fuzzy certain networks in order to cope with a vagueness and limitations of existing models for decision under imprecise and uncertain knowledge. This paper proposes a framework that combines two disciplines to exploit their own advantages in uncertain and imprecise knowledge representation ...

متن کامل

Multi-Entity Bayesian Networks Without Multi-Tears

An introduction is provided to Multi-Entity Bayesian Networks (MEBN), a logic system that integrates First Order Logic (FOL) with Bayesian probability theory. MEBN extends ordinary Bayesian networks to allow representation of graphical models with repeated sub-structures. Knowledge is encoded as a collection of Bayesian network fragments (MFrags) that can be instantiated and combined to form hi...

متن کامل

Knowledge Representation with Possibilistic and Certain Bayesian Networks

-Possibilistic logic and Bayesian networks have provided advantageous methodologies and techniques for computerbased knowledge representation. This paper proposes a framework that combines these two disciplines to exploit their own advantages in uncertain and imprecise knowledge representation problems. The framework proposed is a possibilistic logic based one in which Bayesian nodes and their ...

متن کامل

Knowledge and Data Fusion in Probabilistic Networks

Probability theory provides the theoretical basis for a logically coherent process of combining prior knowledge with empirical data to draw plausible inferences and to refine theories as observations accrue. Increases in the expressive power of languages for expressing probabilistic theories have been accompanied by refinements and adaptations of Bayesian learning methods to handle the more exp...

متن کامل

From Probabilistic Horn Logic to Chain Logic

Probabilistic logics have attracted a great deal of attention during the past few years. Where logical languages have, already from the inception of the field of artificial intelligence, taken a central position in research on knowledge representation and automated reasoning, probabilistic graphical models with their associated probabilistic basis have taken up in recent years a similar positio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000