Situation Assessment via Bayesian Belief Networks
نویسندگان
چکیده
We present here an approach to battlefield situation assessment based on a level 2 fusion processing of incoming information via probabilistic Bayesian Belief Network technology. A belief network (BN) can be thought of as a graphical program script representing causal relationships among various battlefield concepts represented as nodes to which observed significant events are posted as evidence. In our approach, each BN can be constructed in real-time from a library of smaller component-like BNs to assess a specific high-level situation or address mission-specific high-level intelligence requirements. Furthermore, by distributing components of a BN across a set of networked computers, we enhance inferencing efficiency and allow computation at various levels of abstraction suitable for military hierarchical organizations. We demonstrate the effectiveness of our approach by modeling the situation assessment tasks in the context of a battlefield scenario and implementing on our in-house software engine BNet 2000.
منابع مشابه
Project Portfolio Risk Response Selection Using Bayesian Belief Networks
Risk identification, impact assessment, and response planning constitute three building blocks of project risk management. Correspondingly, three types of interactions could be envisioned between risks, between impacts of several risks on a portfolio component, and between several responses. While the interdependency of risks is a well-recognized issue, the other two types of interactions remai...
متن کاملFormalising Engineering Judgement on Software Dependability via Belief Networks
We present the use of Bayesian belief networks to formalise reasoning about software dependability, so as to make assessments easier to build and to check. Bayesian belief networks include a graphical representation of the structure of a complex argument, and a sound calculus for representing probabilistic information and updating it with new observations. We illustrate the method and show its ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملبررسی تأثیر برخی شاخصهای کیفیت آب زیرزمینی بر بیابانزایی اراضی دشت سگزی اصفهان با استفاده از Bayesian Belief Networks
This paper aimed to assess the severity of desertification in Segzi plain located in the eastern part of Isfahan city, focusing on groundwater quality criteria used in MEDALUS model. Bayesian Belief networks (BBNs) were also used to convert MEDALUS model into a predictive, cause and effects model. Different techniques such as Kriging and IDW were applied to water quality data of 12 groundwater ...
متن کامل