Adaptation in the auditory space map of the barn owl.
نویسندگان
چکیده
Auditory neurons in the owl's external nucleus of the inferior colliculus (ICX) integrate information across frequency channels to create a map of auditory space. This study describes a powerful, sound-driven adaptation of unit responsiveness in the ICX and explores the implications of this adaptation for sensory processing. Adaptation in the ICX was analyzed by presenting lightly anesthetized owls with sequential pairs of dichotic noise bursts. Adaptation occurred in response even to weak, threshold-level sounds and remained strong for more than 100 ms after stimulus offset. Stimulation by one range of sound frequencies caused adaptation that generalized across the entire broad range of frequencies to which these units responded. Identical stimuli were used to test adaptation in the lateral shell of the central nucleus of the inferior colliculus (ICCls), which provides input directly to the ICX. Compared with ICX adaptation, adaptation in the ICCls was substantially weaker, shorter lasting, and far more frequency specific, suggesting that part of the adaptation observed in the ICX was attributable to processes resident to the ICX. The sharp tuning of ICX neurons to space, along with their broad tuning to frequency, allows ICX adaptation to preserve a representation of stimulus location, regardless of the frequency content of the sound. The ICX is known to be a site of visually guided auditory map plasticity. ICX adaptation could play a role in this cross-modal plasticity by providing a short-term memory of the representation of auditory localization cues that could be compared with later-arriving, visual-spatial information from bimodal stimuli.
منابع مشابه
Bio-inspired Real Time Sensory Map Realignment in a Robotic Barn Owl
The visual and auditory map alignment in the Superior Colliculus (SC) of barn owl is important for its accurate localization for prey behavior. Prism learning or Blindness may interfere this alignment and cause loss of the capability of accurate prey. However, juvenile barn owl could recover its sensory map alignment by shifting its auditory map. The adaptation of this map alignment is believed...
متن کاملAdaptation of Barn Owl Localization System with Spike Timing Dependent Plasticity
To localize a seen object, the superior colliculus of the barn owl integrates the visual and auditory localization cues which are accessed from the sensory system of the brain. These cues are formed as visual and auditory maps, thus the alignment between visual and auditory maps is very important for accurate localization in prey behavior. Blindness or prism wearing may interfere this alignment...
متن کاملA Topographic Instructive Signal Guides the Adjustment of the Auditory Space Map in the Comparison of Midbrain and Thalamic Space-specific Neurons in Barn Owls Stimulus-specific Adaptations in the Gaze Control System of the Barn Owl
[PDF] [Full Text] [Abstract] , November 1, 2001; 21 (21): 8586-8593. J. Neurosci. P. S. Hyde and E. I. Knudsen Optic Tectum A Topographic Instructive Signal Guides the Adjustment of the Auditory Space Map in the [PDF] [Full Text] [Abstract] , February 1, 2003; 23 (3): 1059-1065. J. Neurosci. G. L. Miller and E. I. Knudsen Adaptive Plasticity in the Auditory Thalamus of Juvenile Barn Owls [P...
متن کاملRegistration of neural maps through value-dependent learning: modeling the alignment of auditory and visual maps in the barn owl's optic tectum.
In the optic tectum (OT) of the barn owl, visual and auditory maps of space are found in close alignment with each other. Experiments in which such alignment has been disrupted have shown a considerable degree of plasticity in the auditory map. The external nucleus of the inferior colliculus (ICx), an auditory center that projects massively to the tectum, is the main site of plasticity; however...
متن کاملBarn owl and sound localization
The barn owl is a nocturnal predator with excellent sound localization ability. Due to the asymmetric ears of this bird, the interaural time and level differences, respectively, provide information for the horizontal and vertical direction of a sound source. Forty years of behavioral, anatomical and physiological research on the owl’s auditory system have revealed that these two acoustic cues a...
متن کاملA Probabilistic Model of Auditory Space Representation in the Barn Owl
The barn owl is a nocturnal hunter, capable of capturing prey using auditory information alone [1]. The neural basis for this localization behavior is the existence of auditory neurons with spatial receptive fields [2]. We provide a mathematical description of the operations performed on auditory input signals by the barn owl that facilitate the creation of a representation of auditory space. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 96 2 شماره
صفحات -
تاریخ انتشار 2006