On stable numerical differentiation

نویسندگان

  • Alexander G. Ramm
  • Alexandra B. Smirnova
چکیده

A new approach to the construction of finite-difference methods is presented. It is shown how the multi-point differentiators can generate regularizing algorithms with a stepsize h being a regularization parameter. The explicitly computable estimation constants are given. Also an iteratively regularized scheme for solving the numerical differentiation problem in the form of Volterra integral equation is developed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

J. KSIAM Vol.7, No.1, 47-61, 2003 STABLE NUMERICAL DIFFERENTIATION: WHEN IS IT POSSIBLE?

Two principally different statements of the problem of stable numerical differentiation are considered. It is analyzed when it is possible in principle to get a stable approximation to the derivative f ′ given noisy data fδ. Computational aspects of the problem are discussed and illustrated by examples. These examples show the practical value of the new understanding of the problem of stable di...

متن کامل

A distinct numerical approach for the solution of some kind of initial value problem involving nonlinear q-fractional differential equations

The fractional calculus deals with the generalization of integration and differentiation of integer order to those ones of any order. The q-fractional differential equation usually describe the physical process imposed on the time scale set Tq. In this paper, we first propose a difference formula for discretizing the fractional q-derivative  of Caputo type with order  and scale index . We es...

متن کامل

A Scheme for Stable Numerical Differentiation

A method for stable numerical differentiation of noisy data is proposed. The method requires solving a Volterra integral equation of the second kind. This equation is solved analytically. In the examples considered its solution is computed analytically. Some numerical results of its application are presented. These examples show that the proposed method for stable numerical differentiation is n...

متن کامل

A Numerical Analysis on the Performance of Counterweight Balance on the Stability of Undercut Slopes

One of the important parameters in undercut slopes design is the determination of the maximum stable undercut span. The maximum stable undercut span is a function of slope geometry, the strength parameters of the slope material, condition of discontinuities, underground water condition, etc. However, the desired production capacity and therefore the size of excavating equipment will sometimes a...

متن کامل

Unconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation

In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2001