An isoform of the phosphatidylinositol-transfer protein transfers sphingomyelin and is associated with the Golgi system.
نویسندگان
چکیده
An isoform of the phosphatidylinositol-transfer protein (PI-TP) was identified in the cytosol fraction of bovine brain. This protein, designated PI-TP beta, has an apparent molecular mass of 36 kDa and an isoelectric point of 5.4. The N-terminal amino acid sequence (21 residues) is 90% similar to that of bovine brain PI-TP, henceforth designated PI-TP alpha (molecular mass 35 kDa and pI 5.5). As observed for PI-TP alpha, PI-TP beta has a distinct preference for phosphatidylinositol over phosphatidylcholine. In addition, it expresses a high transfer activity towards sphingomyelin. PI-TP alpha lacks this activity completely. By indirect immunofluorescence we demonstrated that, in Swiss mouse 3T3 fibroblasts, PI-TP beta is preferentially associated with the Golgi system whereas PI-TP alpha is predominantly present in the cytoplasm and the nucleus. In cytosol-depleted HL60 cells, both PI-TP alpha and PI-TP beta were equally effective at reconstituting guanosine 5'-[gamma-thio]triphosphate-mediated phospholipase C beta activity.
منابع مشابه
Multi-Site Phosphorylation of Oxysterol Binding Protein (OSBP) Regulates Sterol Binding and Activation of Sphingomyelin Synthesis
Multi-Site Phosphorylation of Oxysterol Binding Protein (OSBP) Regulates Sterol Binding and Activation of Sphingomyelin Synthesis Asako Goto, Xinwei Liu, Carolyn-Ann Robinson and Neale D. Ridgway The Atlantic Research Centre, Depts. of Pediatrics, and Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 *Running Head: Phosphorylation regulation of OSBP Ad...
متن کاملCoordinated lipid transfer between the endoplasmic reticulum and the Golgi complex requires the VAP proteins and is essential for Golgi-mediated transport.
Lipid transport between intracellular organelles is mediated by vesicular and nonvesicular transport mechanisms and is critical for maintaining the identities of different cellular membranes. Nonvesicular lipid transport between the endoplasmic reticulum (ER) and the Golgi complex has been proposed to affect the lipid composition of the Golgi membranes. Here, we show that the integral ER-membra...
متن کاملOxysterol Binding Protein-dependent Activation of Sphingomyelin Synthesis in the Golgi Apparatus Requires Phosphatidylinositol 4-Kinase IIα
Cholesterol and sphingomyelin (SM) associate in raft domains and are metabolically coregulated. One aspect of coordinate regulation occurs in the Golgi apparatus where oxysterol binding protein (OSBP) mediates sterol-dependent activation of ceramide transport protein (CERT) activity and SM synthesis. Because CERT transfer activity is dependent on its phosphatidylinositol 4 phosphate [PtdIns(4)P...
متن کاملOxysterol binding protein-related Protein 9 (ORP9) is a cholesterol transfer protein that regulates Golgi structure and function.
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a large gene family that differentially localize to organellar membranes, reflecting a functional role in sterol signaling and/or transport. OSBP partitions between the endoplasmic reticulum (ER) and Golgi apparatus where it imparts sterol-dependent regulation of ceramide transport and sphingomyelin synthesis. ORP9L al...
متن کاملPhosphatidylinositol transfer protein beta displays minimal sphingomyelin transfer activity and is not required for biosynthesis and trafficking of sphingomyelin.
Mammalian phosphatidylinositol transfer proteins (PITPs) alpha and beta, which share 77% identity, have been shown to exhibit distinct lipid-transfer activities. In addition to transferring phosphatidylinositol (PI) and phosphatidylcholine (PC), PITPbeta has been shown to transfer sphingomyelin (SM), and this has led to the suggestion that PITPbeta is important for the regulation of SM metaboli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 310 ( Pt 2) شماره
صفحات -
تاریخ انتشار 1995