Purinergic P2X7 receptor regulates lung surfactant secretion in a paracrine manner.

نویسندگان

  • Amarjit Mishra
  • Narendranath Reddy Chintagari
  • Yujie Guo
  • Tingting Weng
  • Lijing Su
  • Lin Liu
چکیده

Alveolar epithelium is composed of alveolar epithelial cells of type I (AEC I) and type II (AEC II). AEC II secrete lung surfactant by means of exocytosis. P2X(7) receptor (P2X(7)R), a P2 purinergic receptor, has been implicated in the regulation of synaptic transmission and inflammation. Here, we report that P2X(7)R, which is expressed in AEC I but not AEC II, is a novel mediator for the paracrine regulation of surfactant secretion in AEC II. In primary co-cultures of AEC I and AEC II benzoyl ATP (BzATP; an agonist of P2X(7)R) increased surfactant secretion, which was blocked by the P2X(7)R antagonist Brilliant Blue G. This effect was observed in AEC II co-cultured with human embryonic kidney HEK-293 cells stably expressing rat P2X(7)R, but not when co-cultured with AEC I in which P2X(7)R was knocked down or in co-cultures of AEC I and AEC II isolated from P2X(7)R(-/-) mice. BzATP-mediated secretion involved P2Y(2) receptor signaling because it was reduced by the addition of the ATP scavengers apyrase and adenosine deaminase and the P2Y(2) receptor antagonist suramin. However, the stimulation with BzATP might also release other substances that potentially increase surfactant secretion as a greater stimulation of secretion was observed in AEC II incubated with BzATP when co-cultured with E10 or HEK-293-P2X(7)R cells than with ATP alone. P2X(7)R(-/-) mice failed to increase surfactant secretion in response to hyperventilation, pointing to the physiological relevance of P2X(7)R in maintaining surfactant homeostasis in the lung. These results suggest that the activation of P2X(7)R increases surfactant secretion by releasing ATP from AEC I and subsequently stimulating P2Y(2) receptors in AEC II.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P2X7 receptor-mediated apoptosis of human cervical epithelial cells.

Normal human ectocervical epithelial (hECE) cells undergo apoptosis in culture. Baseline apoptosis could be increased by shifting cells to serum-free medium and blocked by lowering extracellular calcium. Treatment with the ATPase apyrase attenuated baseline apoptosis, suggesting that extracellular ATP and purinergic mechanisms control the apoptosis. Treatment with ATP and the P2X7 receptor anal...

متن کامل

P2X7 receptor activation regulates rapid unconventional export of transglutaminase-2

Transglutaminases (denoted TG or TGM) are externalized from cells via an unknown unconventional secretory pathway. Here, we show for the first time that purinergic signaling regulates active secretion of TG2 (also known as TGM2), an enzyme with a pivotal role in stabilizing extracellular matrices and modulating cell-matrix interactions in tissue repair. Extracellular ATP promotes TG2 secretion ...

متن کامل

Purinergic Modulation of Interleukin-1β Release from Microglial Cells Stimulated with Bacterial Endotoxin

Microglial cells express a peculiar plasma membrane receptor for extracellular ATP, named P2Z/P2X7 purinergic receptor, that triggers massive transmembrane ion fluxes and a reversible permeabilization of the plasma membrane to hydrophylic molecules of up to 900 dalton molecule weight and eventual cell death (Di Virgilio, F. 1995. Immunol. Today, 16:524-528). The physiological role of this newly...

متن کامل

The P2X7 Receptor is an Important Regulator of Extracellular ATP Levels

Controlled ATP release has been demonstrated from many neuronal and non-neuronal cell types. Once released, extracellular ATP acts on cells in a paracrine manner via purinergic receptors. Considerable evidence now suggests that extracellular nucleotides, signaling via P2 receptors, play important roles in bone homeostasis modulating both osteoblast and osteoclast function. In this study, we dem...

متن کامل

Extracellular ATP enhances radiation-induced brain injury through microglial activation and paracrine signaling via P2X7 receptor

Activation of purinergic receptors by extracellular ATP (eATP) released from injured cells has been implicated in the pathogenesis of many neuronal disorders. The P2X7 receptor (P2X7R), an ion-selective purinergic receptor, is associated with microglial activation and paracrine signaling. However, whether ATP and P2X7R are involved in radiation-induced brain injury (RBI) remains to be determine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 124 Pt 4  شماره 

صفحات  -

تاریخ انتشار 2011