Acute Thermal Stressor Increases Glucocorticoid Response but Minimizes Testosterone and Locomotor Performance in the Cane Toad (Rhinella marina)
نویسندگان
چکیده
Climatic warming is a global problem and acute thermal stressor in particular could be considered as a major stressor for wildlife. Cane toads (Rhinella marina) have expanded their range into warmer regions of Australia and they provide a suitable model species to study the sub-lethal impacts of thermal stressor on the endocrine physiology of amphibians. Presently, there is no information to show that exposure to an acute thermal stressor could initiate a physiological stress (glucocorticoid) response and secondly, the possible effects on reproductive hormones and performance. Answering these questions is important for understanding the impacts of extreme temperature on amphibians. In this study, we experimented on cane toads from Queensland, Australia by acclimating them to mildly warm temperature (25°C) and then exposing to acute temperature treatments of 30°, 35° or 40°C (hypothetical acute thermal stressors). We measured acute changes in the stress hormone corticosterone and the reproductive hormone testosterone using standard capture and handling protocol and quantified the metabolites of both hormones non-invasively using urinary enzyme-immunoassays. Furthermore, we measured performance trait (i.e. righting response score) in the control acclimated and the three treatment groups. Corticosterone stress responses increased in all toads during exposure to an acute thermal stressor. Furthermore, exposure to a thermal stressor also decreased testosterone levels in all toads. The duration of the righting response (seconds) was longer for toads that were exposed to 40°C than to 30°, 35° or 25°C. The increased corticosterone stress response with increased intensity of the acute thermal stressor suggests that the toads perceived this treatment as a stressor. Furthermore, the results also highlight a potential trade-off with performance and reproductive hormones. Ultimately, exposure acute thermal stressors due to climatic variability could impact amphibians at multiple eco-physiological levels through impacts on endocrine physiology, performance and potentially fitness traits (e.g. reproductive output).
منابع مشابه
Locomotor performance of cane toads differs between native-range and invasive populations
Invasive species provide a robust opportunity to evaluate how animals deal with novel environmental challenges. Shifts in locomotor performance-and thus the ability to disperse-(and especially, the degree to which it is constrained by thermal and hydric extremes) are of special importance, because they might affect the rate that an invader can spread. We studied cane toads (Rhinella marina) acr...
متن کاملChanges in serum and urinary corticosterone and testosterone during short-term capture and handling in the cane toad (Rhinella marina).
Non-invasive endocrine monitoring with minimally invasive biological samples, such as urine, is being used widely for conservation biology research on amphibians. Currently, it is unknown how closely urinary measurements correspond with the traditional serum hormone measurements. We compared urinary and serum concentrations of corticosterone (CORT) and testosterone (T) in adult male cane toads ...
متن کاملMoving south: effects of water temperatures on the larval development of invasive cane toads (Rhinella marina) in cool‐temperate Australia
The distributional limits of many ectothermic species are set by thermal tolerances of early-developmental stages in the life history; embryos and larvae often are less able to buffer environmental variation than are conspecific adults. In pond-breeding amphibians, for example, cold water may constrain viability of eggs and larvae, even if adults can find suitable thermal conditions in terrestr...
متن کاملFauna and vegetation responses to fire and invasion by toxic cane toads (Rhinella marina) in an obligate seeder-dominated tropical savanna in the Kimberley, northern Australia
Context. Changed fire regimes are an important threatening process to savanna biodiversity. Fire-sensitive vegetation such as pindan and its fauna may be particularly susceptible to fire impacts. Invasion by alien species is an additional threatening process. The toxic anuran Rhinella marina is a well publicised invader of savannas. Little is known of impacts in many habitats. Aims. To test the...
متن کامل