FPTAS for Hardcore and Ising Models on Hypergraphs

نویسندگان

  • Pinyan Lu
  • Kuan Yang
  • Chihao Zhang
چکیده

Hardcore and Ising models are two most important families of two state spin systems in statistic physics. Partition function of spin systems is the center concept in statistic physics which connects microscopic particles and their interactions with their macroscopic and statistical properties of materials such as energy, entropy, ferromagnetism, etc. If each local interaction of the system involves only two particles, the system can be described by a graph. In this case, fully polynomialtime approximation scheme (FPTAS) for computing the partition function of both hardcore and anti-ferromagnetic Ising model was designed up to the uniqueness condition of the system. These result are the best possible since approximately computing the partition function beyond this threshold is NP-hard. In this paper, we generalize these results to general physics systems, where each local interaction may involves multiple particles. Such systems are described by hypergraphs. For hardcore model, we also provide FPTAS up to the uniqueness condition, and for anti-ferromagnetic Ising model, we obtain FPTAS under a slightly stronger condition. 1998 ACM Subject Classification F.2.2 Computations on Discrete Structures

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Hypergraph Matchings up to Uniqueness Threshold

We study the problem of approximately counting matchings in hypergraphs of bounded maximum degree and maximum size of hyperedges. With an activity parameter λ, each matching M is assigned a weight λ|M |. The counting problem is formulated as computing a partition function that gives the sum of the weights of all matchings in a hypergraph. This problem unifies two extensively studied statistical...

متن کامل

Inapproximability of the Partition Function for the Antiferromagnetic Ising and Hard-Core Models

Recent inapproximability results of Sly (2010), together with an approximation algorithm presented by Weitz (2006) establish a beautiful picture for the computational complexity of approximating the partition function of the hard-core model. Let λc(T∆) denote the critical activity for the hard-model on the infinite ∆-regular tree. Weitz presented an FPTAS for the partition function when λ < λc(...

متن کامل

An approximation algorithm and FPTAS for Tardy/Lost minimization with common due dates on a single machine

This paper addresses the Tardy/Lost penalty minimization with common due dates on a single machine. According to this performance measure, if the tardiness of a job exceeds a predefined value, the job will be lost and penalized by a fixed value. Initially, we present a 2-approximation algorithm and examine its worst case ratio bound. Then, a pseudo-polynomial dynamic programming algorithm is de...

متن کامل

Counting Independent Sets in Hypergraphs when Strong Spatial Mixing Fails

Approximate counting via correlation decay is the core algorithmic technique used in the sharp delineation of the computational phase transition that arises in the approximation of the partition function of anti-ferromagnetic two-spin models. Previous analyses of correlation-decay algorithms implicitly depended on the occurrence of strong spatial mixing. This, roughly, means that one uses worst...

متن کامل

Approximate Counting of Matchings in (3, 3)-Hypergraphs

We design a fully polynomial time approximation scheme (FPTAS) for counting the number of matchings (packings) in arbitrary 3-uniform hypergraphs of maximum degree three, referred to as (3, 3)hypergraphs. It is the first polynomial time approximation scheme for that problem, which includes also, as a special case, the 3D Matching counting problem for 3-partite (3, 3)-hypergraphs. The proof tech...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016