An efficient privacy protection in mobility social network services with novel clustering-based anonymization
نویسندگان
چکیده
A popular means of social communication for online users has become a trend with rapid growth of social networks in the last few years. Facebook, Myspace, Twitter, LinkedIn, etc. have created huge amounts of data about interactions of social networks. Meanwhile, the trend is also true for offline scenarios with rapid growth of mobile devices such as smart phones, tablets, and laptops used for social interactions. These mobile devices enlarge the traditional social network services platform and lead to a greater amount of mobile social network data. These data contain more private information of individuals such as location, habit, and health condition. However, there are many analytical, sociological, and economic questions that can be answered using these data, so the mobility data managers are expected to share the data with researchers, governments, and/or companies. Therefore, mobile social network data is badly in need of anonymization before it is shared or analyzed widely. k-anonymization is a well-known clustering-based anonymization approach. However, the implementation of this basic approach has been a challenge since many of the mobile social network data involve categorical data values. In this paper, we propose an approach for categorical data clustering using rough entropy method with DBSCAN clustering algorithm to improve the performance of k-anonymization approach. It has the ability to deal with uncertainty in the clustering process and can effectively find arbitrarily shaped clusters. We will report the proposed approach and discuss the credibility by theoretical studies and examples. And experimental results on two benchmark data sets obtained from UCI Machine Learning Repository show that our approach is second to none among the Fuzzy Centroids, MMeR, SDR and ITDR, etc. with respect to the local and global purity of clusters. Since the clustering algorithm is a key point of k-anonymization for clustering mobile social network data, our experimental results show that our proposed algorithm can be more effective to balance the utility of the mobile social network data and the performance of anonymization.
منابع مشابه
An Effective Method for Utility Preserving Social Network Graph Anonymization Based on Mathematical Modeling
In recent years, privacy concerns about social network graph data publishing has increased due to the widespread use of such data for research purposes. This paper addresses the problem of identity disclosure risk of a node assuming that the adversary identifies one of its immediate neighbors in the published data. The related anonymity level of a graph is formulated and a mathematical model is...
متن کاملAn Anonymization Algorithm for (α, β, γ, δ)-Social Network Privacy Considering Data Utility
A well-known privacy-preserving network data publication problem focuses on how to publish social network data while protecting privacy and permitting useful analysis. Designing algorithms that safely transform network data is an active area of research. The process of applying these transformations is called anonymization operation. The authors recently proposed the (α,β,γ,δ)-SNP (Social Netwo...
متن کاملUtility-Oriented K-Anonymization on Social Networks
“Identity disclosure” problem on publishing social network data has gained intensive focus from academia. Existing k-anonymization algorithms on social network may result in nontrivial utility loss. The reason is that the number of the edges modified when anonymizing the social network is the only metric to evaluate utility loss, not considering the fact that different edge modifications have d...
متن کاملSocial Network De-Anonymization and Privacy Inference with Knowledge Graph Model
Social network data is widely shared, transferred and published for research purposes and business interests, but it has raised much concern on users’ privacy. Even though users’ identity information is always removed, attackers can still de-anonymize users with the help of auxiliary information. To protect against de-anonymization attack, various privacy protection techniques for social networ...
متن کاملData Anonymization for Privacy Protection
Social networks have become the universal consumer phenomena and have emerged with increasing popularity nowadays. The amount of network data grows enormously due to the increase of networking websites. The development of social networks has led to the increasing demand for the protection of privacy in publishing the social network data as the social network sites are accumulated with large amo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Wireless Comm. and Networking
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016