Quantum curves and conformal field theory
نویسندگان
چکیده
To a given algebraic curve we assign an infinite family of quantum curves (Schrödinger equations), which are in one-to-one correspondence with, and have the structure of, Virasoro singular vectors. For a spectral curve of a matrix model we build such quantum curves out of an appropriate representation of the Virasoro algebra, encoded in the structure of the α/β-deformed matrix integral and its loop equation. We generalize this construction to a large class of algebraic curves by means of a refined topological recursion. We also specialize this construction to various specific matrix models with polynomial and logarithmic potentials, and among other results, show that various ingredients familiar in the study of conformal field theory (Ward identities, correlation functions and a representation of Virasoro operators acting thereon, BPZ equations) arise upon specialization of our formalism to the multi-Penner matrix model.
منابع مشابه
Stochastic geometry of critical curves, Schramm-Loewner evolutions, and conformal field theory
Conformally-invariant curves that appear at critical points in twodimensional statistical mechanics systems, and their fractal geometry have received a lot of attention in recent years. On the one hand, Schramm [1] has invented a new rigorous as well as practical calculational approach to critical curves, based on a beautiful unification of conformal maps and stochastic processes, and by now kn...
متن کاملConformal field theory and integrable systems associated to elliptic curves
It has become clear over the years that quantum groups (i.e., quasitriangular Hopf algebras, see [D]) and their semiclassical counterpart, Poisson Lie groups, are an essential algebraic structure underlying three related subjects: integrable models of statistical mechanics, conformal field theory and integrable models of quantum field theory in 1+1 dimensions. Still, some points remain obscure ...
متن کاملHarmonic measure & winding of random conformal paths: A Coulomb gas perspective
We consider random conformally invariant paths in the complex plane (SLEs). Using the Coulomb gas method in conformal field theory, we rederive the mixed multifractal exponents associated with both the harmonic measure and winding (rotation or monodromy) near such critical curves, previously obtained by quantum gravity methods. The results also extend to the general cases of harmonic measure mo...
متن کاملFinite Size Scaling and Conformal Curves
In this letter we investigate the finite size scaling effect on SLE(κ, ρ) and boundary conformal field theories and find the effect of fixing some boundary conditions on the free energy per length of SLE(κ, ρ). As an application, we will derive the entanglement entropy of quantum systems in critical regime in presence of boundary operators.
متن کاملHarmonic measure and winding of random conformal paths: A Coulomb gas perspective
We consider random conformally invariant paths in the complex plane (SLEs). Using the Coulomb gas method in conformal field theory, we rederive the mixed multifractal exponents associated with both the harmonic measure and winding (rotation or monodromy) near such critical curves, previously obtained by quantum gravity methods. The results also extend to the general cases of harmonic measure mo...
متن کامل