Retinal axon divergence in the optic chiasm: uncrossed axons diverge from crossed axons within a midline glial specialization.
نویسندگان
چکیده
A long-standing question is how fiber pathways in the mammalian CNS project to both sides of the brain. Static and real-time analyses of dye-labeled retinal axons (Godement et al., 1990, 1994) have demonstrated that at embryonic day 15-17 in the mouse, crossed and uncrossed axons from each eye diverge in a zone 100-200 microns proximal to the midline of the optic chiasm. In this study, we identify cellular specializations in this zone that might serve as cues for retinal axon divergence. Second, using growth cone morphology as an indicator of growth cone destination, we analyzed how crossed and uncrossed retinal growth cones related to these cellular components. Monoclonal antibody RC2, a marker for radial glia in embryonic mouse CNS, revealed a palisade of radial glia straddling the midline. At the midline, a thin raphe of cells that appear morphologically distinct from the radial glia express a free carbohydrate epitope, stage-specific embryonic antigen 1 (SSEA-1). Sections containing Dil-labeled axons and immunolabeled cells indicated that all axons enter the radial glial palisade. Uncrossed axons turn within the palisade, but never beyond the raphe of SSEA-1-positive cells. In addition, ultrastructural analysis indicated that all growth cones contact radial glia, with projections of the growth cone interdigitating with glial fibers. These results demonstrate that retinal axons diverge within a cellular specialization centered around the midline of the developing optic chiasm, consistent with the hypothesis that cues for divergence are located in this zone.
منابع مشابه
Crossed and uncrossed retinal axons respond differently to cells of the optic chiasm midline in vitro
In mouse, retinal axon divergence takes place within a cellular specialization localized at the midline of the optic chiasm. To test whether the cells in this locus present cues for differential retinal axon growth, retinal explants were cocultured with cells dissociated from the chiasmatic midline, both taken from day 14-15 embryos, during the principal period of retinal axon divergence. Compa...
متن کاملThe first retinal axon growth in the mouse optic chiasm: axon patterning and the cellular environment.
The retinofugal pathway is a useful model for axon guidance because fibers from each eye project to targets on both sides of the brain. Studies using static and real time analyses in mice at E15-17 demonstrated that uncrossed axons from ventrotemporal retina diverge from crossed axons in the optic chiasm, where specialized resident cells may direct divergence. Other studies, however, suggest th...
متن کاملINTRODUCTION During development, retinal ganglion cell axons grow from the eye through the ventral diencephalon, where axons from each eye intersect, forming the optic chiasm. The optic chiasm is associated with the formation of a bilateral projection of axons
During development, retinal ganglion cell axons grow from the eye through the ventral diencephalon, where axons from each eye intersect, forming the optic chiasm. The optic chiasm is associated with the formation of a bilateral projection of axons from each retina to major visual relay nuclei (Guillery et al., 1995; Mason and Sretavan, 1997). In rodents, axons from the ventral temporal retina t...
متن کاملRetinal axon divergence in the optic chiasm: midline cells are unaffected by the albino mutation.
The visual pathway in albino animals is abnormal in that there is a smaller number of ipsilaterally projecting retinal ganglion cells. There are two possible sites of gene action that could result in such a defect. The first site is the retina where the amount of pigmentation in the retinal pigment epithelium is correlated with the degree of ipsilateral innervation (La Vail et al. (1978) J. Com...
متن کاملThe early development of retinal ganglion cells with uncrossed axons in the mouse: retinal position and axonal course.
The carbocyanine dye, DiI, has been used to study the retinal origin of the uncrossed retinofugal component of the mouse and to show the course taken by these fibres through the optic nerve and chiasm during development. Optic axons first arrive at the chiasm at embryonic day 13 (E13) but do not cross the midline until E14. After this stage, fibres taking an uncrossed course can be selectively ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 15 5 Pt 2 شماره
صفحات -
تاریخ انتشار 1995