Combinations of various language model technologies including data expansion and adaptation in spontaneous speech recognition

نویسندگان

  • Ryo Masumura
  • Taichi Asami
  • Takanobu Oba
  • Hirokazu Masataki
  • Sumitaka Sakauchi
  • Akinori Ito
چکیده

This paper demonstrates combinations of various language model (LM) technologies simultaneously, not only modeling techniques but also those for training data expansion based on external language resources and unsupervised adaptation for spontaneous speech recognition. Although forming combinations of various LM technologies has been examined, previous works focused on only modeling techniques. In fact, the previous works did not consider other important functionalities in practical spontaneous language modeling; a use of external language resources and an unsupervised LM adaptation. Therefore, our examination employs not only manual transcriptions of target domain speech but also out-of-domain text resources for spontaneous language modeling. In addition, the unsupervised LM adaptation based on multi-pass decoding is aggressively introduced to the combination. Our experimental results show a significant word error rate reduction by combining various technologies compared to using each technology individually in Japanese spontaneous speech recognition task. Furthermore, we also reveal relationships between the technologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent Progress in Corpus-Based Spontaneous Speech Recognition

This paper overviews recent progress in the development of corpus-based spontaneous speech recognition technology. Although speech is in almost any situation spontaneous, recognition of spontaneous speech is an area which has only recently emerged in the field of automatic speech recognition. Broadening the application of speech recognition depends crucially on raising recognition performance f...

متن کامل

Unsupervised Language Model Adaptation for Lecture Speech Recognition

This paper addresses speaker adaptation of language model in large vocabulary spontaneous speech recognition. In spontaneous speech, the expression and pronunciation of words vary a lot depending on the speaker and topic. Therefore, we present unsupervised methods of language model adaptation to a specific speaker by (1) making direct use of the initial recognition result for generating an enha...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Spontaneous Speech Recognition and Summarization

This paper overviews recent progress in the development of corpus-based spontaneous speech recognition technology focusing on various achievements of a Japanese 5-year national project “Spontaneous Speech: Corpus and Processing Technology”. Although speech is in almost any situation spontaneous, recognition of spontaneous speech is an area which has only recently emerged in the field of automat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015