Weedy Setaria Seed Life History
نویسنده
چکیده
The nature of weeds is a complex adaptive, soil-seed communication system. The nature of weedy Setaria life history is an adaptable, changeable system in which complex behaviors emerge when self-similar plant components self-organize into functional traits possessing biological information about spatial structure and temporal behavior. The nature of the weedy Setaria is revealed in the physical (morphological and genetic spatial structures) and the phenomenal (life history behavior instigated by functional traits). Structural self-similarity in morphology is revealed in seed envelope compartmentalization and individual plant tillering; in genetics by local populations and Setaria species-associations forming the global metapopulation. Behavioral self-organization is revealed in the self-pollenating mating system controlling genetic novelty, seed heteroblasty blueprinting seedling recruitment, and phenotypic plasticity and somatic polymorphism optimizing seed fecundity. The weedy Setaria phenotype can be described in terms of the spatial structure of its seed and plant morphology, and by its genotypes and population genetic structure. This spatial structure extends from the cells and tissues of the embryo axes, the surrounding seed envelopes, the individual seed and then plant, the local deme, and ending with the aggregation of local populations forming the global metapopulation. Setaria plant spatial structure is the foundation for emergent life history behavior: self-similar timing of life history processes regulated by functional traits expressed via environment-plant communication. Temporal life history behavior begins in anthesis, fertilization and embryogenesis; development continues with inflorescence tillering, seed dispersal in space and time, and resumption of embryo growth with seedling emergence. Setaria life history behavior is a Markov chain of irreversible (dormancy induction; seed dispersal, 2 germination, seedling emergence, neighbor interactions) and reversible (seed after-ripening, dormancy re-induction) processes of seed-plant state changes (flowering plants, dormant seed, seed germination candidate, germinated seed, seedling) regulated by morpho-physiological traits acting through environment-plant communication systems (environment-plant-seed, soil-seed). Heritable functional traits are the physical reservoirs of information guiding life history development, emergent behavior. Information contained in structural and behavioral traits is communicated directly between soil environment and seed during development. Functional traits controlling seed-seedling behavior are physical information that has evolved in ongoing communication between organism and environment leading to local adaption. The consequence of structural self-similarity and behavioral self-organization has been the evolution of a complex adaptive seed-soil communication system. Weedy Setaria life history is represented in algorithmic form as FoxPatch, a model to forecast seed behavior. The environment-biological informational system with which weedy Setaria life history unfolds is represented in the …
منابع مشابه
Weedy Adaptation in Setaria spp.: VI. S. faberi Seed hull shape as soil germination signal antenna
Ecological selection forces for weedy and domesticated traits have influenced the evolution of seed shape in Setaria resulting in similarity in seed shape that reflects similarity in ecological function rather than reflecting phylogenetic relatedness. Seeds from two diploid subspecies of Setaria viridis, consisting of one weedy subspecies and two races of the domesticated subspecies, and four o...
متن کاملWeedy adaptation in Setaria spp.: IX. Effects of salinity, temperature, light and seed dormancy on Setaria faberi seed germination
INTRODUCTION The ability to grow and reproduce in salty habitats is a function of tolerance to those chemicals at all critical phases of a plant's life history. The ability to withstand salt in the soil during growth and reproduction until it becomes an established vegetative plant may require different mechanisms and plant traits than those needed to overcome dormancy, after-ripen and germinat...
متن کاملWeedy Adaptation in Setaria spp.: VIII. Structure of Setaria faberi Seed, Caryopsis and Embryo Germination
Giant foxtail (Setaria faberi) seeds differ in requirements for germination. Variable germinability arises during seed development under the influence of genotype, environment and parent plant. Giant foxtail seed germination has been shown to be regulated by independent asynchronous or dependent synchronous action of seed structures. To gain better insight into the process, germination was divi...
متن کاملWeedy Adaptation in Setaria spp.: VII. Seed Germination Heteroblasty in Setaria faberi
The dormancy status of S. faberi seed at abscission was assessed with reference to tiller and panicle development. Seed from a single genetic line were grown under field, greenhouse and controlled environment growth chamber conditions. At abscission, a small fraction (<10%) of S. faberi seed germinated under favorable conditions. Seed were dissected and germination of caryopses and embryos also...
متن کاملSetaria viridis and Setaria italica, model genetic systems for the Panicoid grasses.
Setaria italica and its wild ancestor Setaria viridis are diploid C(4) grasses with small genomes of ∼515 Mb. Both species have attributes that make them attractive as model systems. Setaria italica is a grain crop widely grown in Northern China and India that is closely related to the major food and feed crops maize and sorghum. A large collection of S. italica accessions are available and thu...
متن کامل