Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatistical Output Perturbation

نویسندگان

  • Yulia Gel
  • Adrian E. Raftery
  • Tilmann Gneiting
چکیده

Probabilistic weather forecasting consists of finding a joint probability distribution for future weather quantities or events. It is typically done by using a numerical weather prediction model, perturbing the inputs to the model in various ways, often depending on data assimilation, and running the model for each perturbed set of inputs. The result is then viewed as an ensemble of forecasts, taken to be a sample from the joint probability distribution of the future weather quantities of interest. This is typically not feasible for mesoscale weather prediction carried out locally by organizations without the vast data and computing resources of national weather centers. Instead, we propose a simpler method which breaks with much previous practice by perturbing the outputs, or deterministic forecasts, from the model. Forecast errors are modeled using a geostatistical model, and ensemble members are generated by simulating realizations of the geostatistical model. The method is applied to 48-hour mesoscale forecasts of temperature in the US Pacific Northwest in 2000 and 2002. The resulting forecast intervals turn out to be well calibrated for individual meteorological quantities, to be sharper than those obtained from approximate climatology, and to be consistent with aspects of the spatial correlation structure of the observations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic Weather Forecasting in R

Abstract This article describes two R packages for probabilistic weather forecasting, ensembleBMA, which offers ensemble postprocessing via Bayesian model averaging (BMA), and ProbForecastGOP, which implements the geostatistical output perturbation (GOP) method. BMA forecasting models use mixture distributions, in which each component corresponds to an ensemble member, and the form of the compo...

متن کامل

Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts

Forecast ensembles typically show a spread-skill relationship, but they are also often underdispersive, and therefore uncalibrated. Bayesian model averaging (BMA) is a statistical postprocessing method for forecast ensembles that generates calibrated probabilistic forecast products for weather quantities at individual sites. This paper introduces the Spatial BMA technique, which combines BMA an...

متن کامل

Geostatistical Model Averaging for Locally Calibrated Probabilistic Quantitative Precipitation Forecasting

Accurate weather forecasts benefit society in crucial functions, including agriculture, transportation, recreation, and basic human and infrastructural safety. Over the past two decades, ensembles of numerical weather prediction models have been developed, in which multiple estimates of the current state of the atmosphere are used to generate probabilistic forecasts for future weather events. H...

متن کامل

Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging

Probabilistic forecasts of wind speed are becoming critical as interest grows in wind as a clean and renewable source of energy, in addition to a wide range of other uses, from aviation to recreational boating. Statistical approaches to wind forecasting offer two particular challenges: the distribution of wind speeds is highly skewed, and wind observations are reported to the nearest whole knot...

متن کامل

Locally Calibrated Probabilistic Temperature Forecasting Using Geostatistical Model Averaging and Local Bayesian Model Averaging

The authors introduce two ways to produce locally calibrated grid-based probabilistic forecasts of temperature. Both start from the Global Bayesian model averaging (Global BMA) statistical postprocessing method, which has constant predictive bias and variance across the domain, and modify it to make it local. The first local method, geostatistical model averaging (GMA), computes the predictive ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003