Static and dynamic bending has minor effects on xylem hydraulics of conifer branches (Picea abies, Pinus sylvestris)
نویسندگان
چکیده
The xylem hydraulic efficiency and safety is usually measured on mechanically unstressed samples, although trees may be exposed to combined hydraulic and mechanical stress in the field. We analysed changes in hydraulic conductivity and vulnerability to drought-induced embolism during static bending of Picea abies and Pinus sylvestris branches as well as the effect of dynamic bending on the vulnerability. We hypothesized this mechanical stress to substantially impair xylem hydraulics. Intense static bending caused an only small decrease in hydraulic conductance (-19.5 ± 2.4% in P. abies) but no shift in vulnerability thresholds. Dynamic bending caused a 0.4 and 0.8 MPa decrease of the water potential at 50 and 88% loss of conductivity in P. sylvestris, but did not affect vulnerability thresholds in P. abies. With respect to applied extreme bending radii, effects on plant hydraulics were surprisingly small and are thus probably of minor eco-physiological importance. More importantly, results indicate that available xylem hydraulic analyses (of conifers) sufficiently reflect plant hydraulics under field conditions.
منابع مشابه
The hydraulic conductivity of the xylem in conifer needles (Picea abies and Pinus mugo).
Main resistances of the plant water transport system are situated in leaves. In contrast to angiosperm leaves, knowledge of conifer needle hydraulics and of the partitioning of resistances within needles is poor. A new technique was developed which enabled flow-meter measurements through needles embedded in paraffin and thus quantification of the specific hydraulic conductivity (K(s)) of the ne...
متن کاملHeterologous Array Analysis in Pinaceae: Hybridization of Pinus Taeda cDNA Arrays With cDNA From Needles and Embryogenic Cultures of P. Taeda, P. Sylvestris or Picea Abies
Hybridization of labelled cDNA from various cell types with high-density arrays of expressed sequence tags is a powerful technique for investigating gene expression. Few conifer cDNA libraries have been sequenced. Because of the high level of sequence conservation between Pinus and Picea we have investigated the use of arrays from one genus for studies of gene expression in the other. The parti...
متن کاملGeneralized additive models reveal the intrinsic complexity of wood formation dynamics
The intra-annual dynamics of wood formation, which involves the passage of newly produced cells through three successive differentiation phases (division, enlargement, and wall thickening) to reach the final functional mature state, has traditionally been described in conifers as three delayed bell-shaped curves followed by an S-shaped curve. Here the classical view represented by the 'Gompertz...
متن کاملLimitation of the Cavitron technique by conifer pit aspiration.
The Cavitron technique facilitates time and material saving for vulnerability analysis. The use of rotors with small diameters leads to high water pressure gradients (DeltaP) across samples, which may cause pit aspiration in conifers. In this study, the effect of pit aspiration on Cavitron measurements was analysed and a modified 'conifer method' was tested which avoids critical (i.e. pit aspir...
متن کاملAnatomical-based defense responses of Scots pine (Pinus sylvestris) stems to two fungal pathogens.
We investigated the cellular responses of stem tissues of mature Scots pine (Pinus sylvestris L.) trees to inoculations with two fungal pathogens. The bark beetle vectored fungus, Leptographium wingfieldii Morelet, induced longer lesions in the bark, stronger swelling of polyphenolic parenchyma cells, more polyphenol accumulation and increased ray parenchyma activity compared with the root rot ...
متن کامل