Componentwise Linear Modules over a Koszul Algebra
نویسندگان
چکیده
In this paper we devote to generalizing some results of componentwise linear modules over a polynomial ring to the ones over a Koszul algebra. Among other things, we show that the i-linear strand of the minimal free resolution of a componentwise linear module is the minimal free resolution of some module which is described explicitly for any i ∈ Z. In addition we present some theorems about when graded modules with linear quotients are componentwise linear.
منابع مشابه
Regularity of Modules over a Koszul Algebra
We prove that every module over a commutative homogeneous Koszul algebra has regularity bounded by its regularity over a polynomial ring of which the Koszul algebra is a homomorphic image. From this we derive a result conjectured by George Kempf to the effect that a suffkiently high truncation of any module over a homogeneous Koszul algebra has a linear free resolution. ‘E’ 1992 Academic Press....
متن کاملSelfinjective Koszul Algebras
The study of Koszul algebras and their representations has accelerated significantly in the last few years. They have been used in Topology, Algebraic Geometry and Commutative Algebra and they are used more and more frequently in Representation Theory, see for instance [BGS],[GTM],[M],[MZ] and [R]. The aim of this paper is to present some of the results presented by the second author at the Lum...
متن کاملNoncommutative Koszul filtrations
A standard associative graded algebra R over a field k is called Koszul if k admits a linear resolution as an R-module. A (right) R-module M is called Koszul if it admits a linear resolution too. Here we study a special class of Koszul algebras — roughly say, algebras having a lot of Koszul cyclic modules. Commutative algebras with similar properties (so-called algebras with Koszul filtrations)...
متن کاملFree Resolutions of Lex-ideals over a Koszul Toric Ring
In this paper, we study the minimal free resolution of lex-ideals over a Koszul toric ring. In particular, we study in which toric ring R all lexideals are componentwise linear. We give a certain necessity and sufficiency condition for this property, and show that lex-ideals in a strongly Koszul toric ring are componentwise linear. In addition, it is shown that, in the toric ring arising from t...
متن کامل