Measuring retroactivity from noise in gene regulatory networks.

نویسندگان

  • Kyung Hyuk Kim
  • Herbert M Sauro
چکیده

Synthetic gene regulatory networks show significant stochastic fluctuations in expression levels due to the low copy number of transcription factors. When a synthetic gene network is allowed to regulate a downstream network, the response time of the regulating transcription factors increases. This effect has been termed "retroactivity". In this article, we describe a method for estimating the retroactivity of a given system by measuring the stochastic noise in the transcription factor expression. We show that the noise in the output signal of the network can be affected significantly when the output is connected to a downstream module. More specifically, the output signal noise can show significantly longer correlations. We define retroactivity by the change in the correlation time. This measure of retroactivity corresponds well to the deterministic retroactivity described in another study. We provide an estimation method for measuring retroactivity from the gene expression noise by investigating its autocorrelation function. When retroactivity is defined using the decay (correlation) times from the gene expression autocorrelation functions, it is found not to depend on whether the module output is defined as either the free transcription factor or the total of the bound and free transcription factor. The frequency domain response, however, depends strongly on which output variable is considered. The proposed estimation method for measuring retroactivity, based on the gene expression noise, can serve as a practical method for characterizing interface conditions between two synthetic modules and eventually provide a step toward large-scale circuit design for synthetic biology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measuring the Degree of Modularity from Gene Expression Noise in Gene Regulatory Circuits

Gene regulatory circuits show significant stochastic fluctuations in their circuit signals due to the low copy number of transcription factors. When a gene circuit component is connected to an existing circuit, the dynamic properties of the existing circuit can be affected by the connected component. In this paper, we investigate modularity in the dynamics of the gene circuit based on stochasti...

متن کامل

H∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks

Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...

متن کامل

Modular cell biology: retroactivity and insulation

Modularity plays a fundamental role in the prediction of the behavior of a system from the behavior of its components, guaranteeing that the properties of individual components do not change upon interconnection. Just as electrical, hydraulic, and other physical systems often do not display modularity, nor do many biochemical systems, and specifically, genetic networks. Here, we study the effec...

متن کامل

Modularity in Complex Gene Transcription Networks

A promising approach to decipher the complexity of biomolecular networks is to predict their behavior from that of the composing modules. Unfortunately, the behavior of a module changes once connected in the network [1] due to retroactivity effects. Retroactivity arises whenever two molecules bind describing the effect that these molecules become unavailable for other reactions. Recent experime...

متن کامل

Modular Composition of Gene Transcription Networks

Predicting the dynamic behavior of a large network from that of the composing modules is a central problem in systems and synthetic biology. Yet, this predictive ability is still largely missing because modules display context-dependent behavior. One cause of context-dependence is retroactivity, a phenomenon similar to loading that influences in non-trivial ways the dynamic performance of a mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 100 5  شماره 

صفحات  -

تاریخ انتشار 2011