Understanding layer 4 of the cortical circuit: a model based on cat V1.
نویسنده
چکیده
This paper reviews theoretical and experimental results on the processing of layer 4, the input-recipient layer, of cat primary visual cortex (V1). A wide range of experimental data can be understood from a model in which response tuning of layer 4 cells is largely determined by a local interplay of feedforward excitation (from thalamus) and feedforward inhibition (from layer 4 inhibitory interneurons driven by thalamus). Feedforward inhibition dominates excitation, inherits its tuning from the thalamic input and sharpens the tuning of excitatory cells. At least a strong component of the feedforward inhibition received by a cell is spatially opponent to the excitation it receives, meaning that inhibition is driven by dark in regions of the visual field in which excitation is driven by light, and vice versa. The idea of opponent inhibition can be generalized to mean inhibition driven by input patterns that are strongly anti-correlated with the patterns that excite a cell. This paper argues that dominant feedforward opponent inhibition may be a general principle of cortical layer 4. This leads to the suggestion that the properties that show columnar organization--invariance across the vertical depth of cortex--may be properties that are shared by 'opposite' (anticorrelated) stimulus pairs. This contrasts with the more common idea that a column represents a set of cells that all share similar stimulus preferences.
منابع مشابه
Dynamics of Orientation Tuning in Cat V1 Neurons Depend on Location Within Layers and Orientation Maps
Analysis of the timecourse of the orientation tuning of responses in primary visual cortex (V1) can provide insight into the circuitry underlying tuning. Several studies have examined the temporal evolution of orientation selectivity in V1 neurons, but there is no consensus regarding the stability of orientation tuning properties over the timecourse of the response. We have used reverse-correla...
متن کامل(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملA neural model of how horizontal and interlaminar connections of visual cortex develop into adult circuits that carry out perceptual grouping and learning.
A neural model suggests how horizontal and interlaminar connections in visual cortical areas V1 and V2 develop within a laminar cortical architecture and give rise to adult visual percepts. The model suggests how mechanisms that control cortical development in the infant lead to properties of adult cortical anatomy, neurophysiology and visual perception. The model clarifies how excitatory and i...
متن کاملCorrelated Activity And Corticothalamic Cell Function In The Early Mouse Visual System
Vision has long been the model for understanding cortical function. Great progress has been made in understanding the transformations that occur within some primary visual cortex (V1) layers, like the emergence of orientation selectivity in layer 4. Less is known about other V1 circuit elements, like the shaping of V1 input via corticothalamic projections, or the population structure of the cor...
متن کاملDesign of a Single-Layer Circuit Analog Absorber Using Double-Circular-Loop Array via the Equivalent Circuit Model
A broadband Circuit Analogue (CA) absorber using double-circular-loop array is investigated in this paper. A simple equivalent circuit model is presented to accurately analyze this CA absorber. The circuit simulation of the proposed model agrees well with full-wave simulations. Optimization based the equivalent circuit model, is applied to design a single-layer circuit analogue absorber using d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 13 1 شماره
صفحات -
تاریخ انتشار 2003