Structural Features of Membrane Fusion between Influenza Virus and Liposome as Revealed by Quick-Freezing Electron Microscopy
نویسندگان
چکیده
The structure of membrane fusion intermediates between the A/PR/8(H1N1) strain of influenza virus and a liposome composed of egg phosphatidylcholine, cholesterol, and glycophorin was studied using quick-freezing electron microscopy. Fusion by viral hemagglutinin protein was induced at pH 5.0 and 23 degrees C. After a 19-s incubation under these conditions, small protrusions with a diameter of 10-20 nm were found on the fractured convex faces of the liposomal membranes, and small pits complementary to the protrusions were found on the concave faces. The protrusions and pits corresponded to fractured parts of outward bendings of the lipid bilayer or "microprotrusions of the lipid bilayer." At the loci of the protrusions and pits, liposomal membranes had local contacts with viral membranes. In many cases both the protrusions and the pits were aligned in regular polygonal arrangements, which were thought to reflect the array of hemagglutinin spikes on the viral surface. These structures were induced only when the medium was acidic with the virus present. Based on these observations, it was concluded that the microprotrusions of the lipid bilayer are induced by hemagglutinin protein. Furthermore, morphological evidence for the formation of the "initial fusion pore" at the microprotrusion was obtained. The protrusion on the convex face sometimes had a tiny hole with a diameter of <4 nm in the center. The pits transformed into narrow membrane connections <10 nm in width, bridging viruses and liposomes. The structures of the fusion pore and fusion neck with larger sizes were also observed, indicating growth of the protrusions and pits to distinct fusion sites. We propose that the microprotrusion of the lipid bilayer is a fusion intermediate induced by hemagglutinin protein, and suggest that the extraordinarily high curvature of this membrane structure is a clue to the onset of fusion. The possible architecture of the fusion intermediate is discussed with regard to the localization of intramembrane particles at the microprotrusion.
منابع مشابه
Construction of Influenza A/H1N1 Virosomal Nanobioparticles
Background and Aims: Influenza is one of the main respiratory infections of humans, responsible for 300,000–500,000 annual deaths world-wide. Vaccination is one of the best ways to prevent infections including influenza. Influenza virosomes are virus-like particles, which retain the cell binding and membrane fusion properties of the native virus, but lack the ribonucleoprotein (RNP). A vi...
متن کاملFusion of liposomes with the plasma membrane of epithelial cells: fate of incorporated lipids as followed by freeze fracture and autoradiography of plastic sections
The fusion of liposomes with the plasma membrane of influenza virus-infected monolayers of an epithelial cell line, Madin-Darby canine kidney cells (van Meer et al., 1985. Biochemistry. 24:3593-3602), has been analyzed by morphological techniques. The distribution of liposomal lipids over the apical and basolateral plasma membrane domains after fusion was assessed by autoradiography of liposoma...
متن کاملInterfering With Lipid Raft Association: A Mechanism to Control Influenza Virus Infection By Sambucus Nigra
Sambucus nigra (elder) are broadly used species to treat microbial infections. Thepotential antiviral activity and mechanism action of elder fruit (EF) in human epithelium cell(A549) cultures infected with H9N2 influenza virus were determined. The effect of variousconcentrations of EF on influenza virus replication was examined by using virus titration,quantitative real time RT-PCR, fusion and ...
متن کاملInterfering With Lipid Raft Association: A Mechanism to Control Influenza Virus Infection By Sambucus Nigra
Sambucus nigra (elder) are broadly used species to treat microbial infections. Thepotential antiviral activity and mechanism action of elder fruit (EF) in human epithelium cell(A549) cultures infected with H9N2 influenza virus were determined. The effect of variousconcentrations of EF on influenza virus replication was examined by using virus titration,quantitative real time RT-PCR, fusion and ...
متن کاملArchitecture of a nascent viral fusion pore
Enveloped viruses use specialized protein machinery to fuse the viral membrane with that of the host cell during cell invasion. In influenza virus, hundreds of copies of the haemagglutinin (HA) fusion glycoprotein project from the virus surface. Despite intensive study of HA and its fusion activity, the protein's modus operandi in manipulating viral and target membranes to catalyse their fusion...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 137 شماره
صفحات -
تاریخ انتشار 1997