A van der Waerden Variant

نویسنده

  • Kevin J. Compton
چکیده

The classical van der Waerden Theorem says that for every every finite set S of natural numbers and every k-coloring of the natural numbers, there is a monochromatic set of the form aS+b for some a > 0 and b ≥ 0. I.e., monochromatism is obtained by a dilation followed by a translation. We investigate the effect of reversing the order of dilation and translation. S has the variant van der Waerden property for k colors if for every k-coloring there is a monochromatic set of the form a(S+ b) for some a > 0 and b ≥ 0. On the positive side it is shown that every two-element set has the variant van der Waerden property for every k. Also, for every finite S and k there is an n such that nS has the variant van der Waerden property for k colors. This extends the classical van der Waerden Theorem. On the negative side it is shown that if S has at least three elements, the variant van der Waerden property fails for a sufficiently large k. The counterexamples to the variant van der Waerden property are constructed by specifying colorings as Thue-Morse sequences. Submitted July 17, 1997; Accepted April 2, 1999. AMS Subject Classification. Primary: 05D10. Secondary: 11B85, 68R15.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method to Construct Lower Bounds for Van der Waerden Numbers

We present the Cyclic Zipper Method, a procedure to construct lower bounds for Van der Waerden numbers. Using this method we improved seven lower bounds. For natural numbers r, k and n a Van der Waerden certificate W (r, k, n) is a partition of {1, . . . , n} into r subsets, such that none of them contains an arithmetic progression of length k (or larger). Van der Waerden showed that given r an...

متن کامل

The 2-color relative linear Van der Waerden numbers

We define the r-color relative linear van der Waerden numbers for a positive integer r as generalizations of the polynomial van der Waerden numbers of linear polynomials. Especially we express a sharp upper bound of the 2-color relative linear van der Waerden number Rf2(u1, u2, . . . , um : s1, s2, . . . , sk) in terms of a (k + 1)-color polynomial van der Waerden number for positive integers m...

متن کامل

Combinatorial Proofs of the Polynomial Van Der Waerden Theorem and the Polynomial Hales–jewett Theorem

The case with a single polynomial was proved by Furstenberg [3] and Sarkozy [5] (independently). It is easy to see that this generalises van der Waerden’s theorem, which we can recover by setting p i (x) ̄ ix for 1% i%m. Bergelson and Leibman also proved a stronger result. They showed that if AZ . has positive upper density, then there exist a and d such that all the points a and a­p i (d ) are ...

متن کامل

Van Der Waerden Spaces and Hindman Spaces Are Not the Same

A Hausdorff topological space X is van der Waerden if for every sequence (xn)n∈ω in X there is a converging subsequence (xn)n∈A where A ⊆ ω contains arithmetic progressions of all finite lengths. A Hausdorff topological space X is Hindman if for every sequence (xn)n∈ω in X there is an IP-converging subsequence (xn)n∈FS(B) for some infinite B ⊆ ω. We show that the continuum hypothesis implies th...

متن کامل

Resolution Tunnels for Improved SAT Solver Performance

We show how to aggressively add uninferred constraints, in a controlled manner, to formulas for finding Van der Waerden numbers during search. We show that doing so can improve the performance of standard SAT solvers on these formulas by orders of magnitude. We obtain a new and much greater lower bound for one of the Van der Waerden numbers, specifically a bound of 1132 for W (2, 6). We believe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 6  شماره 

صفحات  -

تاریخ انتشار 1999