Tree Block Coordinate Descent for MAP in Graphical Models
نویسندگان
چکیده
A number of linear programming relaxations have been proposed for finding most likely settings of the variables (MAP) in large probabilistic models. The relaxations are often succinctly expressed in the dual and reduce to different types of reparameterizations of the original model. The dual objectives are typically solved by performing local block coordinate descent steps. In this work, we show how to perform block coordinate descent on spanning trees of the graphical model. We also show how all of the earlier dual algorithms are related to each other, giving transformations from one type of reparameterization to another while maintaining monotonicity relative to a common objective function. Finally, we quantify when the MAP solution can and cannot be decoded directly from the dual LP relaxation.
منابع مشابه
Fixing Max-Product: Convergent Message Passing Algorithms for MAP LP-Relaxations
We present a novel message passing algorithm for approximating the MAP problem in graphical models. The algorithm is similar in structure to max-product but unlike max-product it always converges, and can be proven to find the exact MAP solution in various settings. The algorithm is derived via block coordinate descent in a dual of the LP relaxation of MAP, but does not require any tunable para...
متن کاملTime-Varying Gaussian Graphical Models of Molecular Dynamics Data
We introduce an algorithm for learning sparse, time-varying undirected probabilistic graphical models of Molecular Dynamics (MD) data. Our method computes a maximum a posteriori (MAP) estimate of the topology and parameters of the model (i.e., structure learning) using L1regularization of the negative log-likelihood (aka ‘Graphical Lasso’) to ensure sparsity, and a kernel to ensure smoothly var...
متن کاملConvex relaxation methods for graphical models: Lagrangian and maximum entropy approaches
Graphical models provide compact representations of complex probability distributions of many random variables through a collection of potential functions defined on small subsets of these variables. This representation is defined with respect to a graph in which nodes represent random variables and edges represent the interactions among those random variables. Graphical models provide a powerf...
متن کاملFunctional Graphical Models *
Graphical models have attracted increasing attention in recent years, especially in settings involving high dimensional data. In particular Gaussian graphical models are used to model the conditional dependence structure among p Gaussian random variables. As a result of its computational efficiency the graphical lasso (glasso) has become one of the most popular approaches for fitting high dimen...
متن کاملMulti-Task Learning of Gaussian Graphical Models
We present multi-task structure learning for Gaussian graphical models. We discuss uniqueness and boundedness of the optimal solution of the maximization problem. A block coordinate descent method leads to a provably convergent algorithm that generates a sequence of positive definite solutions. Thus, we reduce the original problem into a sequence of strictly convex `∞ regularized quadratic mini...
متن کامل