Microtubules contribute to the birefringence of the retinal nerve fiber layer.

نویسندگان

  • Xiang-Run Huang
  • Robert W Knighton
چکیده

PURPOSE The retinal nerve fiber layer (RNFL) exhibits birefringence that is due to the oriented cylindrical structure of the ganglion cell axons. Possible birefringent structures include axonal membranes, microtubules (MTs), and neurofilaments. MTs are generally assumed to be a major contributor, but this has not been demonstrated. In this study, the MT depolymerizing agent colchicine was used to evaluate the contribution of MTs to RNFL birefringence. METHODS Retinal nerve fiber bundles of isolated rat retina were observed through an imaging polarimeter set near extinction. Images were taken over an extended period. During baseline, the tissue was perfused with a physiological solution. During a treatment period, the solution was switched either to a control solution identical with the baseline solution or to a similar solution containing colchicine. The contrast of nerve fiber bundles was used to follow change of RNFL birefringence over time. RESULTS When imaged by the polarimeter, birefringent retinal nerve fiber bundles appeared as either bright or dark stripes. Bundles displayed as bright stripes were used to follow changes in retardance. The contrast of nerve fiber bundles was stable in control experiments. However, in treatment experiments, bundles were bright during the baseline period, but the contrast of bundles decreased rapidly when the colchicine solution was applied; bundles were barely visible after 30 minutes of treatment. After 70 minutes, the bundle contrast was close to zero at all wavelengths studied (440-780 nm). CONCLUSIONS MTs make a significant contribution to RNFL birefringence. The decrease of RNFL birefringence in glaucoma may indicate a loss of MTs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Retinal Nerve Fiber Layer Thickness is Related to Severity of Parkinson’s Disease

Introduction: We investigated correlation between the retinal nerve fiber layer (RNFL) thickness and the severity of Parkinson's disease (PD). Methods: In this study, the RNFL thickness of 23 patients with Parkinson’s disease (PD) was compared to normal controls (NCs). PD severity was assessed by the MDS-UPDRS (movement disorder society Unified Parkinson Disea...

متن کامل

Polarization properties of the retinal nerve fiber layer.

Recently developed optical techniques provide quantitative structural measurements of the retinal nerve fiber layer (RNFL). A complete interpretation of these measurements requires understanding of the optical properties of the RNFL. This paper gives a review of the polarization properties and relevant anatomy of the ocular tissues, followed by a thorough discussion of the optical properties of...

متن کامل

Investigation of the Relationship between Retinal Nerve Fiber Layer Thickness and Mild Cognitive Impairment

Background and Objective: This study investigated the difference between patients with mild cognitive impairment and healthy controls using Optical Coherence Tomography (OCT) regarding Retinal Nerve Fiber Layer (RNFL) thickness. Materials and Methods: In total, 20 patients with mild cognitive impairment and 20 healthy controls were subjected to neurological examination in this case-control stu...

متن کامل

Longitudinal measurement variability of corneal birefringence and retinal nerve fiber layer thickness in scanning laser polarimetry with variable corneal compensation.

OBJECTIVE To investigate the longitudinal corneal birefringence (corneal polarization axis [CPA] and corneal polarization magnitude [CPM]) variability in scanning laser polarimetry with variable corneal compensation and its effect on retinal nerve fiber layer measurements. Method We analyzed scanning laser polarimetry images obtained every 6 months for 3.2 years in 16 healthy eyes, 38 eyes with...

متن کامل

Invivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography.

To our knowledge, this is the first demonstration of in vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer (RNFL) by use of polarization-sensitive optical coherence tomography (PS-OCT). Because glaucoma causes nerve fiber layer damage, which may cause loss of retinal birefringence, PS-OCT is a potentially useful technique for the early detection of glaucoma. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 46 12  شماره 

صفحات  -

تاریخ انتشار 2005